细胞毒性
分泌物
癌症研究
生物
淋巴因子激活杀伤细胞
头颈部鳞状细胞癌
趋化因子
NK-92
细胞
细胞生物学
白细胞介素21
癌细胞
自然杀伤细胞
免疫系统
肿瘤微环境
免疫学
体外
癌症
T细胞
头颈部癌
生物化学
遗传学
作者
Davide Bernareggi,Qi Xie,Briana C. Prager,Ji-Young Yun,Luisjesus S. Cruz,Timothy V. Pham,William Kim,Xiqing Li,Michael Coffey,Cristina Zalfa,Pardis Azmoon,Zhu Huang,Pablo Tamayo,Jeremy Rich,Dan S. Kaufman
标识
DOI:10.1038/s41467-022-29469-0
摘要
Natural killer (NK) cells are known to mediate killing of various cancer types, but tumor cells can develop resistance mechanisms to escape NK cell-mediated killing. Here, we use a "two cell type" whole genome CRISPR-Cas9 screening system to discover key regulators of tumor sensitivity and resistance to NK cell-mediated cytotoxicity in human glioblastoma stem cells (GSC). We identify CHMP2A as a regulator of GSC resistance to NK cell-mediated cytotoxicity and we confirm these findings in a head and neck squamous cells carcinoma (HNSCC) model. We show that deletion of CHMP2A activates NF-κB in tumor cells to mediate increased chemokine secretion that promotes NK cell migration towards tumor cells. In the HNSCC model we demonstrate that CHMP2A mediates tumor resistance to NK cells via secretion of extracellular vesicles (EVs) that express MICA/B and TRAIL. These secreted ligands induce apoptosis of NK cells to inhibit their antitumor activity. To confirm these in vitro studies, we demonstrate that deletion of CHMP2A in CAL27 HNSCC cells leads to increased NK cell-mediated killing in a xenograft immunodeficient mouse model. These findings illustrate a mechanism of tumor immune escape through EVs secretion and identify inhibition of CHMP2A and related targets as opportunities to improve NK cell-mediated immunotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI