激子
比克西顿
材料科学
半导体
光电子学
凝聚态物理
莫特跃迁
电子
纳米技术
物理
超导电性
量子力学
赫巴德模型
作者
Pengfei Qi,Yuchen Dai,Yang Luo,Guangyi Tao,Wenqi Qian,Zeliang Zhang,Zhi Zhang,Tian Hao Zhang,Lie Lin,Weiwei Liu,Zheyu Fang
标识
DOI:10.1002/admt.202200032
摘要
Abstract Devices operating with excitons have promising prospects for overcoming the dilemma of response time and integration in current generation of electron‐ or/and photon‐based elements and devices. In combination with the advantages of emerging twistronics and valleytronics, the atomically thin transition metal dichalcogenide semiconductors open up new opportunities for pursuing practical excitonic devices, where the strong exciton binding energy enables operating exciton at room temperature. The essential and foremost step toward exciton devices is the control of spatiotemporal exciton flux, which is density‐dependent and affected by the complex many‐body interactions. It can be effectively controlled by the strain, electric field, electron‐doping, and local dielectric environment. Intriguingly, exotic phenomena such as exciton condensation, electron‐hole liquid, exciton Hall effects, and exciton halo effects can be occurred in 2D exciton system, providing new possibilities for excitonic devices. Up to now, the proof‐of‐principle of room temperature exciton devices, including excitonic switching and transistor, exciton guides, and excitonic nanolaser, have been realized. Here the authors review the recent advances in molding 2D exciton flux from basic principle, manipulation, exotic phenomena to promising applications and discuss the opportunities and challenges in pushing the frontiers of room temperature excitonic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI