光催化
材料科学
载流子
分解水
石墨烯
光化学
超快激光光谱学
接受者
微秒
光催化分解水
量子效率
富勒烯
激发态
化学物理
光电子学
纳米技术
光谱学
原子物理学
催化作用
光学
化学
物理
凝聚态物理
量子力学
有机化学
生物化学
作者
Wenchao Wang,Ying Tao,Jinchen Fan,Zhi‐Ping Yan,Huan Shang,David Lee Phillips,Ming Chen,Guisheng Li
标识
DOI:10.1002/adfm.202201357
摘要
Abstract Ultrafast excited‐state decay and intrinsic charge carrier recombination restrain the photoactivity enhancement for solar‐to‐H 2 production. Here, a CdS‐fullerene/graphene (CdS‐F/G) photocatalyst is synthesized for enhancing visible‐light‐driven hydrogen generation from earth‐abundant water. The CdS‐F/G shows ultrafast interfacial electrons/holes transfer and holes self‐trapping process in photocatalysis. The in‐situ dynamic study from transient absorption spectroscopy reveals the sub‐microsecond‐lived excited states (≈172.6 ns), interfacial electron transfer (≈30.3 ps), and hole trapping (≈44.0 ps) in the CdS‐F/G photocatalyst. The efficient active species transportation and prolonged lifetime significantly enhance the charge separation state survival, increasing the photoactivity and photostability. Consequently, visible‐light activity enhancement (>400%) of H 2 evolution reaction (HER) is obtained at the CdS‐F/G photocatalyst with high stability (>36 h). The 127.2 µmol h −1 g −1 performance corresponding to a quantum efficiency of 7.24% at 420 nm is not only higher than the case of pristine CdS (29.2 µmol h −1 g −1 ) but also much higher than that of CdS‐Pt photocatalyst (73.8 µmol h −1 g −1 ). The cost‐effective CdS‐F/G photocatalyst exhibits a great potential for sustainable and high‐efficiency photocatalytic water splitting into clean energy carriers. Moreover, the optimized electronic structure associated with interfacial electrons/holes transfer and holes self‐trapping promotes overall water splitting for H 2 and O 2 generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI