Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control

计算机科学 机器人 人工智能 强化学习 缩小 控制(管理) 序列(生物学) 机制(生物学) 机器学习 哲学 遗传学 认识论 生物 程序设计语言
作者
Hiroshi Ito,Kenjiro Yamamoto,Hiroki MORI,Tetsuya Ogata
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:7 (65) 被引量:51
标识
DOI:10.1126/scirobotics.aax8177
摘要

Robots need robust models to effectively perform tasks that humans do on a daily basis. These models often require substantial developmental costs to maintain because they need to be adjusted and adapted over time. Deep reinforcement learning is a powerful approach for acquiring complex real-world models because there is no need for a human to design the model manually. Furthermore, a robot can establish new motions and optimal trajectories that may not have been considered by a human. However, the cost of learning is an issue because it requires a huge amount of trial and error in the real world. Here, we report a method for realizing complicated tasks in the real world with low design and teaching costs based on the principle of prediction error minimization. We devised a module integration method by introducing a mechanism that switches modules based on the prediction error of multiple modules. The robot generates appropriate motions according to the door’s position, color, and pattern with a low teaching cost. We also show that by calculating the prediction error of each module in real time, it is possible to execute a sequence of tasks (opening door outward and passing through) by linking multiple modules and responding to sudden changes in the situation and operating procedures. The experimental results show that the method is effective at enabling a robot to operate autonomously in the real world in response to changes in the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
1秒前
平淡访冬完成签到,获得积分10
1秒前
柴六斤发布了新的文献求助10
1秒前
啊就是地方就啊都是完成签到,获得积分10
1秒前
2秒前
2秒前
爱听歌的夏烟完成签到,获得积分10
2秒前
3秒前
堪雅寒完成签到,获得积分10
3秒前
spring079完成签到,获得积分10
3秒前
3秒前
linliqing完成签到,获得积分10
3秒前
3秒前
JamesPei应助happiness采纳,获得10
3秒前
flying蝈蝈完成签到,获得积分10
3秒前
vvvvvv完成签到,获得积分10
4秒前
4秒前
热心乐驹完成签到,获得积分10
5秒前
念念完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
123study0完成签到,获得积分10
6秒前
锂氧完成签到,获得积分10
6秒前
曼曼发布了新的文献求助10
7秒前
7秒前
FashionBoy应助菠萝水手采纳,获得30
8秒前
Orange应助洋芋土豆丝采纳,获得10
8秒前
8秒前
8秒前
dockercompose99完成签到,获得积分10
8秒前
8秒前
9秒前
huahua发布了新的文献求助10
9秒前
李爱国应助全球免费科研1采纳,获得10
9秒前
9秒前
锂氧发布了新的文献求助10
10秒前
收集快乐完成签到 ,获得积分10
10秒前
幻心发布了新的文献求助10
10秒前
幽默孤容发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439