Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control

计算机科学 机器人 人工智能 强化学习 缩小 控制(管理) 序列(生物学) 机制(生物学) 机器学习 哲学 遗传学 认识论 生物 程序设计语言
作者
Hiroshi Ito,Kenjiro Yamamoto,Hiroki MORI,Tetsuya Ogata
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:7 (65) 被引量:51
标识
DOI:10.1126/scirobotics.aax8177
摘要

Robots need robust models to effectively perform tasks that humans do on a daily basis. These models often require substantial developmental costs to maintain because they need to be adjusted and adapted over time. Deep reinforcement learning is a powerful approach for acquiring complex real-world models because there is no need for a human to design the model manually. Furthermore, a robot can establish new motions and optimal trajectories that may not have been considered by a human. However, the cost of learning is an issue because it requires a huge amount of trial and error in the real world. Here, we report a method for realizing complicated tasks in the real world with low design and teaching costs based on the principle of prediction error minimization. We devised a module integration method by introducing a mechanism that switches modules based on the prediction error of multiple modules. The robot generates appropriate motions according to the door’s position, color, and pattern with a low teaching cost. We also show that by calculating the prediction error of each module in real time, it is possible to execute a sequence of tasks (opening door outward and passing through) by linking multiple modules and responding to sudden changes in the situation and operating procedures. The experimental results show that the method is effective at enabling a robot to operate autonomously in the real world in response to changes in the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助陽15采纳,获得10
刚刚
缥缈的艳发布了新的文献求助30
刚刚
桐桐应助天气不似预期采纳,获得10
刚刚
幽芊细雨完成签到,获得积分10
刚刚
安详的宝马关注了科研通微信公众号
1秒前
小策发布了新的文献求助10
1秒前
哇芽完成签到,获得积分20
1秒前
大模型应助YGTRECE采纳,获得10
1秒前
enen发布了新的文献求助30
2秒前
墨客完成签到,获得积分20
2秒前
3秒前
3秒前
优美巨人发布了新的文献求助10
3秒前
4秒前
niqiu发布了新的文献求助20
5秒前
5秒前
小红花完成签到,获得积分10
5秒前
Akim应助封尘逸动采纳,获得10
5秒前
Henry完成签到,获得积分10
5秒前
5秒前
怕孤独的广缘完成签到 ,获得积分10
5秒前
Hello应助xiao采纳,获得10
5秒前
6秒前
6秒前
陈洋发布了新的文献求助10
6秒前
y13333完成签到,获得积分10
7秒前
Su完成签到,获得积分20
7秒前
7秒前
7秒前
嘟嘟完成签到 ,获得积分10
8秒前
青山随云走完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
MLT发布了新的文献求助10
8秒前
9秒前
纯情女大发布了新的文献求助10
9秒前
风吹麦田应助fd163c采纳,获得30
9秒前
我是老大应助陈洋采纳,获得10
10秒前
彭于晏应助234采纳,获得10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205400
求助须知:如何正确求助?哪些是违规求助? 4384092
关于积分的说明 13652042
捐赠科研通 4242237
什么是DOI,文献DOI怎么找? 2327262
邀请新用户注册赠送积分活动 1325047
关于科研通互助平台的介绍 1277269