Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control

计算机科学 机器人 人工智能 强化学习 缩小 控制(管理) 序列(生物学) 机制(生物学) 机器学习 哲学 遗传学 认识论 生物 程序设计语言
作者
Hiroshi Ito,Kenjiro Yamamoto,Hiroki MORI,Tetsuya Ogata
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:7 (65) 被引量:49
标识
DOI:10.1126/scirobotics.aax8177
摘要

Robots need robust models to effectively perform tasks that humans do on a daily basis. These models often require substantial developmental costs to maintain because they need to be adjusted and adapted over time. Deep reinforcement learning is a powerful approach for acquiring complex real-world models because there is no need for a human to design the model manually. Furthermore, a robot can establish new motions and optimal trajectories that may not have been considered by a human. However, the cost of learning is an issue because it requires a huge amount of trial and error in the real world. Here, we report a method for realizing complicated tasks in the real world with low design and teaching costs based on the principle of prediction error minimization. We devised a module integration method by introducing a mechanism that switches modules based on the prediction error of multiple modules. The robot generates appropriate motions according to the door’s position, color, and pattern with a low teaching cost. We also show that by calculating the prediction error of each module in real time, it is possible to execute a sequence of tasks (opening door outward and passing through) by linking multiple modules and responding to sudden changes in the situation and operating procedures. The experimental results show that the method is effective at enabling a robot to operate autonomously in the real world in response to changes in the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的问晴完成签到,获得积分10
1秒前
邓晓霞完成签到,获得积分10
1秒前
汀上白沙发布了新的文献求助10
4秒前
4秒前
4秒前
犹豫寒云完成签到,获得积分10
4秒前
5秒前
bkagyin应助鄂雪娇采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助Conglin采纳,获得30
7秒前
7秒前
小龙仔123发布了新的文献求助10
8秒前
Wguan完成签到,获得积分10
11秒前
ooa4321完成签到,获得积分10
11秒前
熊猫文文发布了新的文献求助10
11秒前
半岛铁盒嗷呜完成签到,获得积分20
11秒前
Pan完成签到,获得积分10
12秒前
小智0921完成签到,获得积分10
12秒前
12秒前
邢夏之完成签到 ,获得积分10
13秒前
青鸟飞鱼完成签到,获得积分10
13秒前
yin发布了新的文献求助10
13秒前
洋洋爱吃枣完成签到 ,获得积分10
13秒前
科目三应助86采纳,获得10
13秒前
14秒前
happy完成签到,获得积分10
15秒前
Athos_1992完成签到 ,获得积分10
15秒前
wu发布了新的文献求助10
17秒前
lan发布了新的文献求助10
18秒前
kokaine完成签到,获得积分10
19秒前
淡淡菠萝完成签到 ,获得积分10
19秒前
yin完成签到,获得积分10
19秒前
酸奶烤着吃完成签到,获得积分10
20秒前
踏实的怜菡完成签到 ,获得积分10
21秒前
23秒前
雨晨发布了新的文献求助10
24秒前
25秒前
晚霞常有遗憾完成签到 ,获得积分10
29秒前
谢陈完成签到 ,获得积分10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278