硫化
材料科学
电极
泥浆
电化学
电解质
化学工程
复合材料
天然橡胶
工程类
物理化学
化学
作者
Tae Young Kwon,Kyu Tae Kim,Dae Yang Oh,Yong Bae Song,Seunggoo Jun,Yoon Seok Jung
标识
DOI:10.1016/j.ensm.2022.04.017
摘要
For all-solid-state Li batteries (ASLBs), the external operating pressure offsets the detrimental electrochemo-mechanical effects. In this work, a new scalable in situ protocol to reinforce binders for sulfide-electrolyte-based ASLBs operating under low or no external pressures is reported. The vulcanization of butadiene rubber (BR) using elemental sulfur proceeds in situ during the wet-slurry fabrication process for electrodes, forming a mechanically resilient crosslinked structure. The electrochemical performance of LiNi0.70Co0.15Mn0.15O2 electrodes fabricated using pristine or vulcanized BR diverge significantly as the operating pressure is lowered from 70 MPa to a practically acceptable value of 2 MPa. Complementary analysis using cross-sectional scanning electron microscopy and operando electrochemical pressiometry measurements confirms that the vulcanization of BR suppresses the electrochemo-mechanical degradation of electrodes, which suggests that the scaffolding structure of the vulcanized BR helps maintain the microstructural integrity of the electrodes upon charge and discharge. The significantly enhanced performance of the vulcanized BR is also demonstrated for pouch-type LiNi0.70Co0.15Mn0.15O2/Li4Ti5O12 full cells operated under no external pressure (reversible capacity of 121 vs. 150 mA h g−1 at 0.2C for electrodes with pristine vs. vulcanized BR, respectively).
科研通智能强力驱动
Strongly Powered by AbleSci AI