清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence techniques for prediction of drug synergy in malignant diseases: Past, present, and future

计算机科学 人工智能 药物开发 风险分析(工程) 数据科学 机器学习 药品 医学 药理学
作者
Pooja Rani,Kamlesh Dutta,Vijay Kumar
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:144: 105334-105334 被引量:7
标识
DOI:10.1016/j.compbiomed.2022.105334
摘要

In recent years, there has been a surge of interest in the application and acceptance of Artificial Intelligence for challenges involving development, design, and prediction. Artificial Intelligence has not only changed the way we see the world, but it has also offered up new avenues for solving problems. This has been made possible by advances in technology, the availability of large amounts of data generated in various formats, the availability of increasing computational capacity in the form of GPUs and TPUs, and the reduction of costs. The advantages of applying AI in medicine have long been recognized, backed up by ongoing research from numerous institutes, hospitals, and pharmaceutical companies. Drug synergy prediction in malignant diseases is one example of a problem domain that has benefited considerably from AI breakthroughs. Traditionally, finding synergistic drug combinations for malignant diseases by experimental methods has had little success, as promising outcomes may be obtained during trials but may not be achieved during actual treatment due to the development of drug resistance over time. Experimental techniques can only be used for a restricted number of drugs because they are time demanding and expensive. Screening all necessary drug combinations is impractical due to limited resources. The goal of this research is to look at the past, present, and future of AI applications, with an emphasis on drug synergy prediction in malignant diseases using deep learning models. The benefits of utilizing AI to forecast drug synergy are discussed in this paper, as well as future research directions and challenges for applying AI techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丹妮完成签到 ,获得积分10
8秒前
艳艳子发布了新的文献求助20
49秒前
SCI的芷蝶完成签到 ,获得积分10
1分钟前
Qing完成签到 ,获得积分10
1分钟前
艳艳子完成签到,获得积分10
1分钟前
方白秋完成签到,获得积分10
1分钟前
充电宝应助大方的从寒采纳,获得10
2分钟前
直率的拉米完成签到,获得积分10
3分钟前
3分钟前
kaka发布了新的文献求助50
4分钟前
fengfenghao发布了新的文献求助200
5分钟前
study00122完成签到,获得积分10
5分钟前
香蕉觅云应助junhan采纳,获得10
5分钟前
6分钟前
junhan发布了新的文献求助10
6分钟前
junhan发布了新的文献求助150
6分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
Ann完成签到,获得积分10
7分钟前
gwbk完成签到,获得积分10
8分钟前
JamesPei应助科研通管家采纳,获得10
8分钟前
瘦瘦的枫叶完成签到 ,获得积分10
9分钟前
爱心完成签到 ,获得积分10
9分钟前
汉堡包应助kaka采纳,获得50
10分钟前
英喆完成签到 ,获得积分10
10分钟前
大方的从寒完成签到,获得积分20
10分钟前
10分钟前
10分钟前
fengfenghao完成签到,获得积分10
11分钟前
11分钟前
14分钟前
ZSJ发布了新的文献求助10
14分钟前
14分钟前
哈哈哈发布了新的文献求助10
14分钟前
15分钟前
kaka发布了新的文献求助50
15分钟前
小刘爱读文献完成签到 ,获得积分10
15分钟前
852应助科研通管家采纳,获得10
16分钟前
宇文非笑完成签到 ,获得积分10
18分钟前
mito完成签到,获得积分10
19分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261573
求助须知:如何正确求助?哪些是违规求助? 2902466
关于积分的说明 8319719
捐赠科研通 2572266
什么是DOI,文献DOI怎么找? 1397536
科研通“疑难数据库(出版商)”最低求助积分说明 653809
邀请新用户注册赠送积分活动 632285