As an important battery cathode material, reaction distribution in lithium iron phosphate (LiFePO4) has been extensively studied in dispersed particle systems, but remains poorly understood for mesoscopic agglomerates (or secondary particles) that are used in most commercial batteries. Herein, we apply three-dimensional X-ray spectroscopic imaging to characterize the two-phase structure in LiFePO4 secondary particles during electrochemical cycling. (De)lithiated domains are found to not form the commonly assumed core–shell structure but develop highly anisotropic filamentary morphology that is rate independent and symmetric between charging and discharging. Phase-field simulations elucidate that the observed 1D phase growth behavior is not caused by the 1D lithium diffusivity of LiFePO4 but the elastic interaction between primary particles, which gives rise to stronger reaction heterogeneity than dispersed nanoparticles. As a result, uniform lithium (de)intercalation does not occur on the secondary particle surface even at high cycling rates.