炎症体
狼疮性肾炎
发病机制
肾
肾炎
医学
免疫系统
免疫学
内科学
内分泌学
系统性红斑狼疮
化学
炎症
疾病
作者
Junhui He,Mingchong Sun,Sujian Tian
标识
DOI:10.1177/1753425918780985
摘要
Lupus nephritis (LN) is a multifactorial event that contributes to the long-term mortality of systemic lupus erythematosus (SLE). Activation of NLRP3 inflammasome has been known to play a role in SLE pathogenesis. We evaluated the renal protection effects of procyanidin B2 (PCB2) and the involvement of NLRP3 in a mouse model involving MRL/lpr and MRL/MpJ mice. Kidney injury was evaluated by measuring the renal clinical and pathological features, renal immune complex deposition, and serum anti-double-stranded (anti-dsDNA) Abs. ELISA and Western blotting were used to detect NLRP3 inflammasome activation and IL-1β/IL-18 production. NLRP3 gene silencing was introduced into MRL/lpr mice by short hairpin RNA, and the renal damage was compared with the treatment of PCB2. PCB2 remarkably reduced renal damage in MRL/lpr mice, reflected by the reduced proteinuria, and serum levels of blood urea nitrogen and creatinine, as well as pathological features with less renal injury. PCB2 significantly reduced renal immune complex deposition and serum anti-dsDNA levels, notably inhibited the NLRP3 inflammasome activation, and reduced the renal and serum levels of IL-1β and IL-18 in MRL/lpr mice compared with those of NLRP3 gene-silenced MRL-lpr mice. PCB2 significantly suppressed LN in MRL-lpr mice by inhibiting the activation of NLRP3 inflammasome and subsequent IL-1β and IL-18 production. This finding explores a novel mechanism by which procyanidin exerts inflammatory suppression effects and its clinical benefits in LN prevention.
科研通智能强力驱动
Strongly Powered by AbleSci AI