GC‐MS profiling of fatty acids in green coffee (Coffea arabica L.) beans and chemometric modeling for tracing geographical origins from Ethiopia

小粒咖啡 亚油酸 油酸 食品科学 主成分分析 棕榈酸 化学 咖啡豆 脂肪酸 线性判别分析 多不饱和脂肪酸 硬脂酸 生咖啡 咖啡 数学 植物 生物 生物化学 有机化学 统计
作者
Bewketu Mehari,Mesfin Redi‐Abshiro,Bhagwan Singh Chandravanshi,Sandra Combrinck,Rob I. McCrindle,Minaleshewa Atlabachew
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:99 (8): 3811-3823 被引量:52
标识
DOI:10.1002/jsfa.9603
摘要

Abstract BACKGROUND This study was aimed at the development of objective analytical method capable of verifying the production region of the coffee beans. One hundred samples of green coffee ( Coffea arabica L.) beans from the major producing regions, comprising various sub‐regional types, were studied for variations in their fatty acid compositions by using gas chromatography coupled with mass spectrometry. Principal component analysis (PCA) was used to visualize data trends. Linear discriminant analysis (LDA) was used to construct classification models. RESULTS Twenty‐one different fatty acids were detected in all of the samples. The total fatty acid content varied from 83 to 204 g kg −1 across the regions. Oleic, linoleic, palmitic, stearic and arachidic acids were identified as the most discriminating compounds among the production regions. The recognition and prediction abilities of the LDA model for classification at regional level were 95% and 92%, respectively, and 92% and 85%, respectively, at sub‐regional level. CONCLUSION Fatty acids contain adequate information for use as descriptors of the cultivation region of coffee beans. Chemometric methods based on fatty acid composition can be used to detect fraudulently labeled coffees, with regard to the production region. These can benefit the coffee production market by providing consumers with products of the expected quality. © 2019 Society of Chemical Industry

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆梨医生完成签到,获得积分10
刚刚
wang完成签到,获得积分10
刚刚
red发布了新的文献求助10
1秒前
李华发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
田様应助温婉的篮球采纳,获得10
4秒前
月光入梦发布了新的文献求助10
5秒前
科研通AI6应助cc采纳,获得30
6秒前
追寻师完成签到 ,获得积分10
6秒前
Hushluo完成签到,获得积分10
6秒前
Akim应助包容代芹采纳,获得10
7秒前
8秒前
wang发布了新的文献求助10
8秒前
科研通AI6应助oxear采纳,获得10
8秒前
花海发布了新的文献求助10
9秒前
饼干完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
勤奋雨完成签到,获得积分10
11秒前
乐观的凌兰完成签到 ,获得积分10
11秒前
专注的问寒应助cherrychou采纳,获得30
12秒前
13秒前
无昵称完成签到 ,获得积分10
13秒前
饼干发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
花开花落花无悔完成签到 ,获得积分10
15秒前
大模型应助Rdeohio采纳,获得10
15秒前
一只萌新完成签到,获得积分10
16秒前
17秒前
WangYZ发布了新的文献求助10
17秒前
17秒前
华仔应助老李采纳,获得10
17秒前
18秒前
xiaoliu发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858