Identification of the differentially expressed genes of Pinctada maxima individuals with different sizes through transcriptome analysis

转录组 鉴定(生物学) 生物 基因 马克西玛 遗传学 进化生物学 计算生物学 基因表达 生态学 艺术 表演艺术 艺术史
作者
Ziman Wang,Liang Feilong,Ronglian Huang,Yuewen Deng,Junhui Li
出处
期刊:Regional Studies in Marine Science [Elsevier]
卷期号:26: 100512-100512 被引量:23
标识
DOI:10.1016/j.rsma.2019.100512
摘要

The oyster species Pinctada maxima is cultured for the production of large pearls with high economic value. Pearl weight and thickness are related to the growth of P. maxima. The molecular mechanism underlying the growth of this species, however, remains poorly understood given the limited availability of the genetic and genomic information of this species. Here, the molecular mechanism of the asynchronous growth of P. maxima was investigated. The transcriptomes of large and small P. maxima individuals were sequenced using the Illumina HiSeq 2000 platform. A total of 145,877 unigenes were generated for the transcriptomes, and 1,921 differentially expressed genes (DEGs) were identified. Compared with the slow-growing group, the fast-growing group showed 879 and 1,042 significantly up- and down-regulated DEGs, respectively. The differential expression patterns of nine selected genes were obtained through real-time quantitative polymerase chain reaction analysis and showed consistency with those obtained through RNA-Seq analysis. The results of this study provide further insight on the complexity of the differential growth patterns of P. maxima individuals and will help guide the design of breeding programs for this economically important species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
JamesPei应助Lay采纳,获得10
刚刚
CodeCraft应助一般的采纳,获得10
刚刚
lee完成签到 ,获得积分10
刚刚
Li完成签到,获得积分10
刚刚
1秒前
雨田发布了新的文献求助10
2秒前
来篇nature完成签到,获得积分10
2秒前
2秒前
2秒前
包容友儿完成签到,获得积分10
2秒前
菠萝冰棒完成签到,获得积分10
3秒前
lululu发布了新的文献求助100
3秒前
3秒前
ZhaoRongzhe完成签到,获得积分10
3秒前
freebird完成签到,获得积分10
3秒前
汤传麒完成签到,获得积分20
3秒前
Freya完成签到,获得积分10
3秒前
shy完成签到,获得积分10
3秒前
hkp发布了新的文献求助10
3秒前
4秒前
qingmoheng应助anle采纳,获得10
4秒前
科研通AI6应助anle采纳,获得10
4秒前
快乐的妙菱完成签到,获得积分10
4秒前
chen完成签到,获得积分10
4秒前
ws完成签到,获得积分20
4秒前
Werner完成签到 ,获得积分10
5秒前
科研通AI2S应助深情代芙采纳,获得10
5秒前
Orange应助刘博士采纳,获得10
5秒前
5秒前
5秒前
6秒前
我是弱智先帮我完成签到,获得积分10
6秒前
汤传麒发布了新的文献求助10
6秒前
快乐的萝莉完成签到,获得积分10
6秒前
zzz发布了新的文献求助10
6秒前
路途遥远完成签到,获得积分10
7秒前
7秒前
鱼憨儿完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024