政治
环境伦理学
政治学
社会学
计算机科学
认识论
认知科学
心理学
哲学
法学
出处
期刊:Cornell University - arXiv
日期:2017-01-01
被引量:183
标识
DOI:10.48550/arxiv.1712.03586
摘要
What does it mean for a machine learning model to be `fair', in terms which can be operationalised? Should fairness consist of ensuring everyone has an equal probability of obtaining some benefit, or should we aim instead to minimise the harms to the least advantaged? Can the relevant ideal be determined by reference to some alternative state of affairs in which a particular social pattern of discrimination does not exist? Various definitions proposed in recent literature make different assumptions about what terms like discrimination and fairness mean and how they can be defined in mathematical terms. Questions of discrimination, egalitarianism and justice are of significant interest to moral and political philosophers, who have expended significant efforts in formalising and defending these central concepts. It is therefore unsurprising that attempts to formalise `fairness' in machine learning contain echoes of these old philosophical debates. This paper draws on existing work in moral and political philosophy in order to elucidate emerging debates about fair machine learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI