Morphological classification of pancreatic ductal adenocarcinoma that predicts molecular subtypes and correlates with clinical outcome

生物 分级(工程) 胰腺导管腺癌 医学 胰腺癌 基因表达 病理 基因 基因表达谱 腺癌 胰腺 癌症 遗传学 内分泌学 生态学
作者
Sangeetha Kalimuthu,Gavin W. Wilson,Robert C. Grant,Matthew Seto,Grainne M. O’Kane,Rajkumar Vajpeyi,Faiyaz Notta,Steven Gallinger,Runjan Chetty
出处
期刊:Gut [BMJ]
卷期号:69 (2): 317-328 被引量:92
标识
DOI:10.1136/gutjnl-2019-318217
摘要

Transcriptional analyses have identified several distinct molecular subtypes in pancreatic ductal adenocarcinoma (PDAC) that have prognostic and potential therapeutic significance. However, to date, an indepth, clinicomorphological correlation of these molecular subtypes has not been performed. We sought to identify specific morphological patterns to compare with known molecular subtypes, interrogate their biological significance, and furthermore reappraise the current grading system in PDAC.We first assessed 86 primary, chemotherapy-naive PDAC resection specimens with matched RNA-Seq data for specific, reproducible morphological patterns. Differential expression was applied to the gene expression data using the morphological features. We next compared the differentially expressed gene signatures with previously published molecular subtypes. Overall survival (OS) was correlated with the morphological and molecular subtypes.We identified four morphological patterns that segregated into two components ('gland forming' and 'non-gland forming') based on the presence/absence of well-formed glands. A morphological cut-off (≥40% 'non-gland forming') was established using RNA-Seq data, which identified two groups (A and B) with gene signatures that correlated with known molecular subtypes. There was a significant difference in OS between the groups. The morphological groups remained significantly prognostic within cancers that were moderately differentiated and classified as 'classical' using RNA-Seq.Our study has demonstrated that PDACs can be morphologically classified into distinct and biologically relevant categories which predict known molecular subtypes. These results provide the basis for an improved taxonomy of PDAC, which may lend itself to future treatment strategies and the development of deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪发布了新的文献求助10
刚刚
1秒前
樱_花qxy发布了新的文献求助10
2秒前
李健应助宇哈哈采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
Daylight发布了新的文献求助10
3秒前
3秒前
顺利煎蛋应助小羊采纳,获得10
4秒前
chenxin7271发布了新的文献求助10
4秒前
顾矜应助英勇的若灵采纳,获得10
4秒前
4秒前
苗条的小肥羊完成签到,获得积分10
6秒前
晨曦将至发布了新的文献求助10
6秒前
悄悄发布了新的文献求助10
7秒前
无奈傲菡发布了新的文献求助10
7秒前
薯条发布了新的文献求助10
7秒前
LAN0528发布了新的文献求助10
8秒前
小石头发布了新的文献求助10
9秒前
浅夏初晴发布了新的文献求助10
9秒前
xiaosongshu完成签到 ,获得积分10
9秒前
充电宝应助chenxin7271采纳,获得10
10秒前
看你个完成签到,获得积分10
10秒前
科研通AI2S应助CG2021采纳,获得10
10秒前
10秒前
11秒前
wangteng发布了新的文献求助10
12秒前
13秒前
CodeCraft应助灵巧忆南采纳,获得10
13秒前
小二郎应助薯条采纳,获得10
14秒前
窝窝头完成签到,获得积分10
15秒前
鲤鱼无心发布了新的文献求助30
16秒前
16秒前
正函数完成签到,获得积分10
16秒前
年纪阿瑟东完成签到,获得积分10
17秒前
anbiii发布了新的文献求助10
17秒前
洁净无心发布了新的文献求助10
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721