纳米技术
纳米结构
纳米颗粒
制作
材料科学
共价键
自组装
生物传感器
化学
医学
病理
有机化学
替代医学
作者
Hyukjun Choi,Bongseo Choi,Gwang Joong Kim,Han‐ul Kim,Hansol Kim,Hyun Suk Jung,Sebyung Kang
出处
期刊:Small
[Wiley]
日期:2018-07-31
卷期号:14 (35)
被引量:24
标识
DOI:10.1002/smll.201801488
摘要
Abstract Fabrication of functional nanostructures is a prominent issue in nanotechnology, because they often exhibit unique properties that are different from the individual building blocks. Protein cage nanoparticles are attractive nanobuilding blocks for constructing nanostructures due to their well‐defined symmetric spherical structures, polyvalent nature, and functional plasticity. Here, a lumazine synthase protein cage nanoparticle is genetically modified to be used as a template to generate functional nanobuilding blocks and covalently display enzymes (β‐lactamase) and protein ligands (FKBP12/FRB) on its surface, making dual‐functional nanobuilding blocks. Nanoreaction clusters are subsequently created by ligand‐mediated alternate deposition of two complementary building blocks using layer‐by‐layer (LbL) assemblies. 3D nanoreaction clusters provide enhanced enzymatic activity compared with monolayered building block arrays. The approaches described here may provide new opportunities for fabricating functional nanostructures and nanoreaction clusters, leading to the development of new protein nanoparticle‐based nanostructured biosensor devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI