Computational Design of Novel Hydrogen-Doped, Oxygen-Deficient Monoclinic Zirconia with Excellent Optical Absorption and Electronic Properties

材料科学 兴奋剂 电介质 吸收(声学) 空位缺陷 吸收边 单斜晶系 化学物理 带隙 接受者 光电子学 化学 结晶学 凝聚态物理 晶体结构 物理 有机化学 复合材料
作者
Sarah A. Tolba,Nageh K. Allam
出处
期刊:Scientific Reports [Springer Nature]
卷期号:9 (1) 被引量:33
标识
DOI:10.1038/s41598-019-46778-5
摘要

Monoclinic ZrO2 has recently emerged as a new highly efficient material for the photovoltaic and photocatalytic applications. Herein, first-principles calculations were carried out to understand how Hydrogen doping can affect the electronic structure and optical properties of the material. The effects of Hydrogen interstitial and substitutional doping at different sites and concentrations in m-ZrO2 were examined by an extensive model study to predict the best structure with the optimal properties for use in solar energy conversion devices. Hydrogen interstitials (Hi) in pristine m-ZrO2 were found to lower the formation energy but without useful effects on the electronic or optical properties. Hydrogen mono- and co-occupying oxygen vacancy (Ov) were also investigated. At low concentration of Hydrogen mono-occupying oxygen vacancy (HOv), Hydrogen atoms introduced shallow states below the conduction band minimum (CBM) and increase the dielectric constant, which could be very useful for gate dielectric application. The number and position of such defect states strongly depend on the doping sites and concentration. At high oxygen vacancy concentration, the modeled HOv-Ov structure shows the formation of shallow and localized states that are only 1.1 eV below the CBM with significantly high dielectric constant and extended optical absorption to the infrared region. This strong absorption with the high permittivity and low exciton binding energies make the material an ideal candidate for use in solar energy harvesting devices. Finally, the band edge positions of pristine and doped structures with respect to the redox potentials of water splitting indicated that Hydrogen occupying oxygen vacancies can increase the photocatalytic activity of the material for hydrogen generation due the extremely improved optical absorption and the band gap states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wocao完成签到 ,获得积分10
4秒前
卡卡发布了新的文献求助10
4秒前
5秒前
aa完成签到,获得积分10
5秒前
昵称什么的不重要啦完成签到 ,获得积分10
5秒前
甜筒完成签到 ,获得积分10
5秒前
兴奋的问旋应助Li猪猪采纳,获得10
6秒前
钰c完成签到,获得积分10
7秒前
心灵美的白易完成签到,获得积分10
7秒前
勤劳冰烟完成签到,获得积分10
9秒前
雨雾完成签到,获得积分10
9秒前
斯文败类应助凶狠的乐巧采纳,获得10
9秒前
9秒前
生言生语完成签到,获得积分10
9秒前
alick发布了新的文献求助10
10秒前
钰c发布了新的文献求助10
10秒前
Maggie完成签到 ,获得积分10
10秒前
四月是一只爱猫的羊完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
打打应助嘟嘟请让一让采纳,获得10
12秒前
专一完成签到,获得积分10
12秒前
Lucas应助九川采纳,获得10
12秒前
yl关闭了yl文献求助
12秒前
13秒前
研友_VZG7GZ应助韩莎莎采纳,获得10
13秒前
13秒前
丘比特应助卡卡采纳,获得10
14秒前
14秒前
毛毛发布了新的文献求助10
14秒前
ljx完成签到 ,获得积分10
14秒前
活力山蝶应助小白采纳,获得10
17秒前
xg完成签到,获得积分10
17秒前
Zezezee发布了新的文献求助10
17秒前
笑点低可乐完成签到,获得积分10
18秒前
18秒前
坚强的樱发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794