Design rules for minimizing voltage losses in high-efficiency organic solar cells

开路电压 光电子学 光电流 光伏系统 材料科学 有机太阳能电池 接受者 钙钛矿(结构) 电致发光 电压 光致发光 量子产额 混合太阳能电池 太阳能 纳米技术 太阳能电池 化学 聚合物太阳能电池 电气工程 光学 物理 工程类 图层(电子) 结晶学 荧光 凝聚态物理
作者
Deping Qian,Zilong Zheng,Huifeng Yao,Wolfgang Tress,Thomas R. Hopper,Shula Chen,Sunsun Li,Jing Liu,Shangshang Chen,Jiangbin Zhang,Xiaoke Liu,Bowei Gao,Liangqi Ouyang,Yingzhi Jin,Г. Позина,I. A. Buyanova,Weimin Chen,Olle Inganäs,Veaceslav Coropceanu,Jean‐Luc Brédas,He Yan,Jianhui Hou,Fengling Zhang,Artem A. Bakulin,Feng Gao
出处
期刊:Nature Materials [Springer Nature]
卷期号:17 (8): 703-709 被引量:790
标识
DOI:10.1038/s41563-018-0128-z
摘要

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor–acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor–acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells. Key optoelectronic properties for donor and acceptor organic semiconductors are identified to obtain organic solar cells with reduced open-circuit voltage losses and high power conversion efficiencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助百宝采纳,获得10
刚刚
怕黑砖头完成签到,获得积分10
1秒前
2秒前
2秒前
花玥鹿完成签到,获得积分10
2秒前
cybbbbbb完成签到,获得积分10
2秒前
咳咳完成签到,获得积分10
2秒前
3秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
3秒前
3秒前
Fareth完成签到,获得积分10
3秒前
领导范儿应助故意的绿竹采纳,获得10
3秒前
3秒前
复杂谷蓝完成签到 ,获得积分10
3秒前
4秒前
迟大猫应助于某人采纳,获得10
4秒前
qingkong发布了新的文献求助10
5秒前
5秒前
5秒前
细腻白柏完成签到,获得积分10
5秒前
5秒前
麦满分完成签到,获得积分10
6秒前
长度2到发布了新的文献求助10
6秒前
Alicia完成签到,获得积分10
7秒前
西瓜大虫完成签到,获得积分10
7秒前
害羞聋五发布了新的文献求助10
8秒前
prosperp完成签到,获得积分0
8秒前
Hongsong完成签到,获得积分20
8秒前
prosperp应助背侧丘脑采纳,获得10
9秒前
好好发布了新的文献求助10
9秒前
gaos发布了新的文献求助10
9秒前
einuo发布了新的文献求助10
10秒前
001完成签到,获得积分20
10秒前
李健应助阔达萧采纳,获得10
10秒前
陆离发布了新的文献求助10
10秒前
11秒前
66应助雪白红紫采纳,获得10
11秒前
英俊的铭应助东郭南松采纳,获得10
11秒前
YANG完成签到 ,获得积分10
12秒前
冷酷哈密瓜完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678