无线电技术
医学
单变量
胶质瘤
神经组阅片室
多元分析
多元统计
放射科
单变量分析
对比度(视觉)
核医学
病理
内科学
神经学
人工智能
统计
数学
计算机科学
精神科
癌症研究
作者
Changliang Su,Jingjing Jiang,Shun Zhang,Jingjing Shi,Kaibin Xu,Nanxi Shen,Jiaxuan Zhang,Li Li,Lingyun Zhao,Ju Zhang,Yuanyuan Qin,Yong Liu,Wenzhen Zhu
标识
DOI:10.1007/s00330-018-5704-8
摘要
To explore the feasibility and diagnostic performance of radiomics based on anatomical, diffusion and perfusion MRI in differentiating among glioma subtypes and predicting tumour proliferation. 220 pathology-confirmed gliomas and ten contrasts were included in the retrospective analysis. After being registered to T2FLAIR images and resampling to 1 mm3 isotropically, 431 radiomics features were extracted from each contrast map within a semi-automatic defined tumour volume. For single-contrast and the combination of all contrasts, correlations between the radiomics features and pathological biomarkers were revealed by partial correlation analysis, and multivariate models were built to identify the best predictive models with adjusted 0.632+ bootstrap AUC. In univariate analysis, both non-wavelet and wavelet radiomics features were correlated significantly with tumour grade and the Ki-67 labelling index. The max R was 0.557 (p = 2.04E-14) in T1C for tumour grade and 0.395 (p = 2.33E-07) in ADC for Ki-67. In the multivariate analysis, the combination of all-contrast radiomics features had the highest AUCs in both differentiating among glioma subtypes and predicting proliferation compared with those in single-contrast images. For low-/high-grade gliomas, the best AUC was 0.911. In differentiating among glioma subtypes, the best AUC was 0.896 for grades II–III, 0.997 for grades II–IV, and 0.881 for grades III–IV. In predicting proliferation levels, multicontrast features led to an AUC of 0.936. Multicontrast radiomics supplies complementary information on both geometric characters and molecular biological traits, which correlated significantly with tumour grade and proliferation. Combining all-contrast radiomics models might precisely predict glioma biological behaviour, which may be attributed to presurgical personal diagnosis. • Multicontrast MRI radiomics features are significantly correlated with tumour grade and Ki-67 LI. • Multimodality MRI provides independent but supplemental information in assessing glioma pathological behaviour. • Combined multicontrast MRI radiomics can precisely predict glioma subtypes and proliferation levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI