Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour

无线电技术 医学 单变量 胶质瘤 神经组阅片室 多元分析 多元统计 放射科 单变量分析 对比度(视觉) 核医学 病理 内科学 神经学 人工智能 统计 数学 计算机科学 癌症研究 精神科
作者
Changliang Su,Jingjing Jiang,Shun Zhang,Jingjing Shi,Kaibin Xu,Nanxi Shen,Jiaxuan Zhang,Li Li,Lingyun Zhao,Ju Zhang,Yuanyuan Qin,Yong Liu,Wenzhen Zhu
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (4): 1986-1996 被引量:84
标识
DOI:10.1007/s00330-018-5704-8
摘要

To explore the feasibility and diagnostic performance of radiomics based on anatomical, diffusion and perfusion MRI in differentiating among glioma subtypes and predicting tumour proliferation. 220 pathology-confirmed gliomas and ten contrasts were included in the retrospective analysis. After being registered to T2FLAIR images and resampling to 1 mm3 isotropically, 431 radiomics features were extracted from each contrast map within a semi-automatic defined tumour volume. For single-contrast and the combination of all contrasts, correlations between the radiomics features and pathological biomarkers were revealed by partial correlation analysis, and multivariate models were built to identify the best predictive models with adjusted 0.632+ bootstrap AUC. In univariate analysis, both non-wavelet and wavelet radiomics features were correlated significantly with tumour grade and the Ki-67 labelling index. The max R was 0.557 (p = 2.04E-14) in T1C for tumour grade and 0.395 (p = 2.33E-07) in ADC for Ki-67. In the multivariate analysis, the combination of all-contrast radiomics features had the highest AUCs in both differentiating among glioma subtypes and predicting proliferation compared with those in single-contrast images. For low-/high-grade gliomas, the best AUC was 0.911. In differentiating among glioma subtypes, the best AUC was 0.896 for grades II–III, 0.997 for grades II–IV, and 0.881 for grades III–IV. In predicting proliferation levels, multicontrast features led to an AUC of 0.936. Multicontrast radiomics supplies complementary information on both geometric characters and molecular biological traits, which correlated significantly with tumour grade and proliferation. Combining all-contrast radiomics models might precisely predict glioma biological behaviour, which may be attributed to presurgical personal diagnosis. • Multicontrast MRI radiomics features are significantly correlated with tumour grade and Ki-67 LI. • Multimodality MRI provides independent but supplemental information in assessing glioma pathological behaviour. • Combined multicontrast MRI radiomics can precisely predict glioma subtypes and proliferation levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的冰姬完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
tony完成签到,获得积分10
3秒前
Uynaux发布了新的文献求助30
3秒前
SONG完成签到,获得积分10
3秒前
SYLH应助干秋白采纳,获得10
4秒前
4秒前
风雨1210发布了新的文献求助10
5秒前
文艺书雪完成签到 ,获得积分10
5秒前
独行侠完成签到,获得积分10
5秒前
6秒前
我测你码发布了新的文献求助10
6秒前
又要起名字完成签到,获得积分10
6秒前
6秒前
6秒前
damian完成签到,获得积分10
7秒前
LiShin发布了新的文献求助10
7秒前
渝州人应助凤凰山采纳,获得10
8秒前
sweetbearm应助凤凰山采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得30
8秒前
顾矜应助随机起的名采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
pinging应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
yizhiGao应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得20
9秒前
小小旋风应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
敬老院N号应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794