Radiomics based on multicontrast MRI can precisely differentiate among glioma subtypes and predict tumour-proliferative behaviour

无线电技术 医学 单变量 胶质瘤 神经组阅片室 多元分析 多元统计 放射科 单变量分析 对比度(视觉) 核医学 病理 内科学 神经学 人工智能 统计 数学 计算机科学 精神科 癌症研究
作者
Changliang Su,Jingjing Jiang,Shun Zhang,Jingjing Shi,Kaibin Xu,Nanxi Shen,Jiaxuan Zhang,Li Li,Lingyun Zhao,Ju Zhang,Yuanyuan Qin,Yong Liu,Wenzhen Zhu
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (4): 1986-1996 被引量:84
标识
DOI:10.1007/s00330-018-5704-8
摘要

To explore the feasibility and diagnostic performance of radiomics based on anatomical, diffusion and perfusion MRI in differentiating among glioma subtypes and predicting tumour proliferation. 220 pathology-confirmed gliomas and ten contrasts were included in the retrospective analysis. After being registered to T2FLAIR images and resampling to 1 mm3 isotropically, 431 radiomics features were extracted from each contrast map within a semi-automatic defined tumour volume. For single-contrast and the combination of all contrasts, correlations between the radiomics features and pathological biomarkers were revealed by partial correlation analysis, and multivariate models were built to identify the best predictive models with adjusted 0.632+ bootstrap AUC. In univariate analysis, both non-wavelet and wavelet radiomics features were correlated significantly with tumour grade and the Ki-67 labelling index. The max R was 0.557 (p = 2.04E-14) in T1C for tumour grade and 0.395 (p = 2.33E-07) in ADC for Ki-67. In the multivariate analysis, the combination of all-contrast radiomics features had the highest AUCs in both differentiating among glioma subtypes and predicting proliferation compared with those in single-contrast images. For low-/high-grade gliomas, the best AUC was 0.911. In differentiating among glioma subtypes, the best AUC was 0.896 for grades II–III, 0.997 for grades II–IV, and 0.881 for grades III–IV. In predicting proliferation levels, multicontrast features led to an AUC of 0.936. Multicontrast radiomics supplies complementary information on both geometric characters and molecular biological traits, which correlated significantly with tumour grade and proliferation. Combining all-contrast radiomics models might precisely predict glioma biological behaviour, which may be attributed to presurgical personal diagnosis. • Multicontrast MRI radiomics features are significantly correlated with tumour grade and Ki-67 LI. • Multimodality MRI provides independent but supplemental information in assessing glioma pathological behaviour. • Combined multicontrast MRI radiomics can precisely predict glioma subtypes and proliferation levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助yimi采纳,获得10
2秒前
3秒前
3秒前
CodeCraft应助白白不读书采纳,获得10
3秒前
4秒前
meehan完成签到,获得积分10
4秒前
友好小之发布了新的文献求助10
5秒前
苹果丑应助小白手套auv采纳,获得50
6秒前
8秒前
8秒前
淡淡冰薇发布了新的文献求助10
8秒前
8秒前
菲菲发布了新的文献求助10
9秒前
杳鸢应助白白不读书采纳,获得20
9秒前
10秒前
小玉完成签到,获得积分10
10秒前
科研通AI2S应助简单以冬采纳,获得10
11秒前
11秒前
共享精神应助墨aizhan采纳,获得10
12秒前
12秒前
yimi完成签到,获得积分10
12秒前
12秒前
乔呆驼完成签到,获得积分10
12秒前
仙林AK47完成签到,获得积分10
13秒前
港岛妹妹应助高贵超短裙采纳,获得10
13秒前
13秒前
和谐竺发布了新的文献求助10
14秒前
14秒前
wuta完成签到,获得积分10
15秒前
夏青荷发布了新的文献求助10
16秒前
Owen应助小玉采纳,获得10
17秒前
yyy1234567完成签到,获得积分10
17秒前
淡淡冰薇完成签到,获得积分10
17秒前
武雨寒发布了新的文献求助10
17秒前
wangtao发布了新的文献求助10
18秒前
19秒前
小泌完成签到,获得积分10
19秒前
神秘人完成签到,获得积分10
19秒前
咕咕唧唧发布了新的文献求助10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254496
求助须知:如何正确求助?哪些是违规求助? 2896621
关于积分的说明 8293567
捐赠科研通 2565575
什么是DOI,文献DOI怎么找? 1393151
科研通“疑难数据库(出版商)”最低求助积分说明 652436
邀请新用户注册赠送积分活动 629972