Detail-Preserving Underexposed Image Enhancement via Optimal Weighted Multi-Exposure Fusion

计算机视觉 计算机科学 图像融合 人工智能 亮度 图像(数学) 图像增强 对比度(视觉) 光学 物理
作者
Shiguang Liu,Yu Zhang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (3): 303-311 被引量:42
标识
DOI:10.1109/tce.2019.2893644
摘要

Photographs taken by mobile device usually suffer from loss of details and low visual attraction due to the poor light condition. The enhancement of the underexposed image can effectively solve this problem. However, previous work may inevitably wash out some weak edges and lose details when handling several underexposed images. To deal with these problems, this paper presents a detail-preserving underexposed image enhancement method based on a new optimal weighted multi-exposure fusion mechanism. Providing an input underexposed image, we propose a novel multi-exposure image enhancement method which can generate a multi-exposure image sequence. However, none of these images are good enough, as images with high exposure have good brightness and color information, whereas sharp details are better preserved in the images with lower exposure. In order to preserve details and enhance the blurred edges, we propose to solve an energy function to compute the optimal weight of the three measurements: 1) local contrast; 2) saturation; and 3) exposedness. Then a weighted multi-exposed fusion method is used to generate the final image. Since the proposed approach is computationally light-weight, it is possible to implement it on mobile devices, such as smart phones and compact cameras. Various experiment results validate our new method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助霸气秀采纳,获得10
刚刚
星夜完成签到,获得积分10
刚刚
1秒前
念y完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助泡芙采纳,获得10
1秒前
汉堡包应助优雅的新筠采纳,获得10
1秒前
Pu_tao完成签到,获得积分10
1秒前
1秒前
333发布了新的文献求助10
2秒前
shhoing应助Mcdull采纳,获得10
2秒前
2秒前
obaica完成签到,获得积分10
2秒前
酷波er应助健壮的凉面采纳,获得10
2秒前
AME发布了新的文献求助10
3秒前
慧1111111应助精明的雅绿采纳,获得10
4秒前
四眼骷髅完成签到,获得积分20
4秒前
4秒前
魁梧的熊猫完成签到,获得积分10
4秒前
小猪完成签到,获得积分10
4秒前
5秒前
5秒前
小云朵完成签到,获得积分20
6秒前
希望天下0贩的0应助YAN采纳,获得10
6秒前
6秒前
lxg完成签到,获得积分10
6秒前
墨水完成签到,获得积分10
7秒前
7秒前
7秒前
san完成签到,获得积分10
7秒前
8秒前
Criminology34应助小猪采纳,获得10
8秒前
ChenYX发布了新的文献求助10
8秒前
李健的粉丝团团长应助333采纳,获得10
8秒前
9秒前
9秒前
zhuzhu完成签到 ,获得积分20
9秒前
小二郎应助Lixiang采纳,获得10
9秒前
科研通AI6应助oyk采纳,获得10
10秒前
内向的芸发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552171
求助须知:如何正确求助?哪些是违规求助? 4636980
关于积分的说明 14646858
捐赠科研通 4578831
什么是DOI,文献DOI怎么找? 2511146
邀请新用户注册赠送积分活动 1486319
关于科研通互助平台的介绍 1457510