Detail-Preserving Underexposed Image Enhancement via Optimal Weighted Multi-Exposure Fusion

计算机视觉 计算机科学 图像融合 人工智能 亮度 图像(数学) 图像增强 对比度(视觉) 光学 物理
作者
Shiguang Liu,Yu Zhang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (3): 303-311 被引量:42
标识
DOI:10.1109/tce.2019.2893644
摘要

Photographs taken by mobile device usually suffer from loss of details and low visual attraction due to the poor light condition. The enhancement of the underexposed image can effectively solve this problem. However, previous work may inevitably wash out some weak edges and lose details when handling several underexposed images. To deal with these problems, this paper presents a detail-preserving underexposed image enhancement method based on a new optimal weighted multi-exposure fusion mechanism. Providing an input underexposed image, we propose a novel multi-exposure image enhancement method which can generate a multi-exposure image sequence. However, none of these images are good enough, as images with high exposure have good brightness and color information, whereas sharp details are better preserved in the images with lower exposure. In order to preserve details and enhance the blurred edges, we propose to solve an energy function to compute the optimal weight of the three measurements: 1) local contrast; 2) saturation; and 3) exposedness. Then a weighted multi-exposed fusion method is used to generate the final image. Since the proposed approach is computationally light-weight, it is possible to implement it on mobile devices, such as smart phones and compact cameras. Various experiment results validate our new method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助li采纳,获得10
1秒前
酷波er应助小南采纳,获得10
1秒前
烟花应助落落采纳,获得30
1秒前
晒黑的雪碧完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
xxl完成签到 ,获得积分10
5秒前
在水一方应助王雯雯采纳,获得10
5秒前
6秒前
万能图书馆应助年少轻狂采纳,获得10
6秒前
yangxi发布了新的文献求助10
6秒前
7秒前
小雪糕完成签到,获得积分10
9秒前
学术熊发布了新的文献求助10
9秒前
刘霞发布了新的文献求助10
9秒前
单薄靖儿发布了新的文献求助10
9秒前
在水一方应助路内里采纳,获得10
10秒前
10秒前
Kimen发布了新的文献求助10
11秒前
12秒前
kangjie123完成签到,获得积分10
13秒前
yangxi完成签到,获得积分20
13秒前
不攻自破发布了新的文献求助10
14秒前
NexusExplorer应助lili采纳,获得10
15秒前
17秒前
桐桐应助小情绪采纳,获得100
19秒前
思源应助wuchang采纳,获得10
20秒前
20秒前
20秒前
英俊的流沙完成签到,获得积分10
22秒前
学术熊完成签到,获得积分10
22秒前
刘霞发布了新的文献求助10
24秒前
小夏发布了新的文献求助10
24秒前
orixero应助zzh采纳,获得10
24秒前
Arvin发布了新的文献求助10
24秒前
草木发布了新的文献求助10
24秒前
99668完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959531
求助须知:如何正确求助?哪些是违规求助? 3505774
关于积分的说明 11125924
捐赠科研通 3237671
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802902