Detail-Preserving Underexposed Image Enhancement via Optimal Weighted Multi-Exposure Fusion

计算机视觉 计算机科学 图像融合 人工智能 亮度 图像(数学) 图像增强 对比度(视觉) 光学 物理
作者
Shiguang Liu,Yu Zhang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (3): 303-311 被引量:42
标识
DOI:10.1109/tce.2019.2893644
摘要

Photographs taken by mobile device usually suffer from loss of details and low visual attraction due to the poor light condition. The enhancement of the underexposed image can effectively solve this problem. However, previous work may inevitably wash out some weak edges and lose details when handling several underexposed images. To deal with these problems, this paper presents a detail-preserving underexposed image enhancement method based on a new optimal weighted multi-exposure fusion mechanism. Providing an input underexposed image, we propose a novel multi-exposure image enhancement method which can generate a multi-exposure image sequence. However, none of these images are good enough, as images with high exposure have good brightness and color information, whereas sharp details are better preserved in the images with lower exposure. In order to preserve details and enhance the blurred edges, we propose to solve an energy function to compute the optimal weight of the three measurements: 1) local contrast; 2) saturation; and 3) exposedness. Then a weighted multi-exposed fusion method is used to generate the final image. Since the proposed approach is computationally light-weight, it is possible to implement it on mobile devices, such as smart phones and compact cameras. Various experiment results validate our new method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
残梦完成签到,获得积分10
刚刚
CodeCraft应助波波采纳,获得10
2秒前
2秒前
2秒前
九耳久知发布了新的文献求助10
3秒前
残梦发布了新的文献求助100
3秒前
cabbage008发布了新的文献求助10
4秒前
Alberto完成签到,获得积分10
5秒前
爆米花应助无情的宛儿采纳,获得10
6秒前
Limanman发布了新的文献求助10
7秒前
orixero应助翔翔超人采纳,获得10
8秒前
10秒前
科目三应助lipc采纳,获得10
11秒前
Neo完成签到,获得积分10
11秒前
脑洞疼应助正直的迎丝采纳,获得10
11秒前
鸭鸭要学习鸭完成签到,获得积分10
13秒前
so000应助Ray采纳,获得10
15秒前
15秒前
thchiang发布了新的文献求助10
15秒前
niko发布了新的文献求助10
16秒前
xjl发布了新的文献求助10
21秒前
22秒前
mishen完成签到,获得积分10
22秒前
24秒前
25秒前
nhjiebio发布了新的文献求助10
25秒前
隐形曼青应助trayheep采纳,获得10
26秒前
科研小垃圾完成签到,获得积分10
26秒前
mishen发布了新的文献求助10
27秒前
JamesPei应助丢丢采纳,获得10
27秒前
28秒前
29秒前
29秒前
上善若水完成签到 ,获得积分10
30秒前
晓晓来了发布了新的文献求助10
32秒前
32秒前
耍酷的棉花糖完成签到,获得积分10
33秒前
huoo完成签到 ,获得积分10
33秒前
852应助今天真暖采纳,获得10
34秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455233
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021628
捐赠科研通 2739152
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693320