清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Detail-Preserving Underexposed Image Enhancement via Optimal Weighted Multi-Exposure Fusion

计算机视觉 计算机科学 图像融合 人工智能 亮度 图像(数学) 图像增强 对比度(视觉) 光学 物理
作者
Shiguang Liu,Yu Zhang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (3): 303-311 被引量:42
标识
DOI:10.1109/tce.2019.2893644
摘要

Photographs taken by mobile device usually suffer from loss of details and low visual attraction due to the poor light condition. The enhancement of the underexposed image can effectively solve this problem. However, previous work may inevitably wash out some weak edges and lose details when handling several underexposed images. To deal with these problems, this paper presents a detail-preserving underexposed image enhancement method based on a new optimal weighted multi-exposure fusion mechanism. Providing an input underexposed image, we propose a novel multi-exposure image enhancement method which can generate a multi-exposure image sequence. However, none of these images are good enough, as images with high exposure have good brightness and color information, whereas sharp details are better preserved in the images with lower exposure. In order to preserve details and enhance the blurred edges, we propose to solve an energy function to compute the optimal weight of the three measurements: 1) local contrast; 2) saturation; and 3) exposedness. Then a weighted multi-exposed fusion method is used to generate the final image. Since the proposed approach is computationally light-weight, it is possible to implement it on mobile devices, such as smart phones and compact cameras. Various experiment results validate our new method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
郑琦敏钰完成签到 ,获得积分10
4秒前
6秒前
立行完成签到 ,获得积分10
8秒前
15秒前
18秒前
XD824发布了新的文献求助10
19秒前
优雅的WAN完成签到 ,获得积分10
31秒前
32秒前
热情的橙汁完成签到,获得积分10
36秒前
38秒前
个性的紫菜应助hugeyoung采纳,获得30
38秒前
靓丽宛亦完成签到 ,获得积分10
43秒前
hugeyoung完成签到,获得积分10
47秒前
49秒前
萝卜猪完成签到,获得积分10
53秒前
57秒前
58秒前
Wen完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
LMW应助lee采纳,获得10
1分钟前
XD824发布了新的文献求助10
2分钟前
sfjww发布了新的文献求助30
2分钟前
中恐完成签到,获得积分0
2分钟前
2分钟前
xun应助lee采纳,获得30
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助如沐春风采纳,获得10
2分钟前
ffff完成签到,获得积分10
2分钟前
2分钟前
3分钟前
如沐春风完成签到,获得积分10
3分钟前
3分钟前
如沐春风发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098