Detail-Preserving Underexposed Image Enhancement via Optimal Weighted Multi-Exposure Fusion

计算机视觉 计算机科学 图像融合 人工智能 亮度 图像(数学) 图像增强 对比度(视觉) 光学 物理
作者
Shiguang Liu,Yu Zhang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (3): 303-311 被引量:42
标识
DOI:10.1109/tce.2019.2893644
摘要

Photographs taken by mobile device usually suffer from loss of details and low visual attraction due to the poor light condition. The enhancement of the underexposed image can effectively solve this problem. However, previous work may inevitably wash out some weak edges and lose details when handling several underexposed images. To deal with these problems, this paper presents a detail-preserving underexposed image enhancement method based on a new optimal weighted multi-exposure fusion mechanism. Providing an input underexposed image, we propose a novel multi-exposure image enhancement method which can generate a multi-exposure image sequence. However, none of these images are good enough, as images with high exposure have good brightness and color information, whereas sharp details are better preserved in the images with lower exposure. In order to preserve details and enhance the blurred edges, we propose to solve an energy function to compute the optimal weight of the three measurements: 1) local contrast; 2) saturation; and 3) exposedness. Then a weighted multi-exposed fusion method is used to generate the final image. Since the proposed approach is computationally light-weight, it is possible to implement it on mobile devices, such as smart phones and compact cameras. Various experiment results validate our new method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paulmichael发布了新的文献求助10
1秒前
煜琪完成签到 ,获得积分10
1秒前
科研小白完成签到 ,获得积分10
3秒前
暗月青影完成签到,获得积分10
9秒前
imagine完成签到,获得积分10
11秒前
13秒前
任性的向薇完成签到,获得积分10
15秒前
我是老大应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
NICAI应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得20
16秒前
ding应助科研通管家采纳,获得10
16秒前
小葵花完成签到 ,获得积分10
16秒前
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
16秒前
拼搏应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
小新应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Verity应助科研通管家采纳,获得10
17秒前
小新应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
19秒前
韩涵完成签到 ,获得积分10
21秒前
22秒前
adoudoo完成签到 ,获得积分10
23秒前
Jodie发布了新的文献求助10
27秒前
GaoChenxi完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555