Detail-Preserving Underexposed Image Enhancement via Optimal Weighted Multi-Exposure Fusion

计算机视觉 计算机科学 图像融合 人工智能 亮度 图像(数学) 图像增强 对比度(视觉) 光学 物理
作者
Shiguang Liu,Yu Zhang
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:65 (3): 303-311 被引量:42
标识
DOI:10.1109/tce.2019.2893644
摘要

Photographs taken by mobile device usually suffer from loss of details and low visual attraction due to the poor light condition. The enhancement of the underexposed image can effectively solve this problem. However, previous work may inevitably wash out some weak edges and lose details when handling several underexposed images. To deal with these problems, this paper presents a detail-preserving underexposed image enhancement method based on a new optimal weighted multi-exposure fusion mechanism. Providing an input underexposed image, we propose a novel multi-exposure image enhancement method which can generate a multi-exposure image sequence. However, none of these images are good enough, as images with high exposure have good brightness and color information, whereas sharp details are better preserved in the images with lower exposure. In order to preserve details and enhance the blurred edges, we propose to solve an energy function to compute the optimal weight of the three measurements: 1) local contrast; 2) saturation; and 3) exposedness. Then a weighted multi-exposed fusion method is used to generate the final image. Since the proposed approach is computationally light-weight, it is possible to implement it on mobile devices, such as smart phones and compact cameras. Various experiment results validate our new method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
方方发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
高赛文发布了新的文献求助10
6秒前
6秒前
lmm完成签到 ,获得积分10
6秒前
7秒前
在水一方应助cheng采纳,获得10
8秒前
stanfordlee发布了新的文献求助10
9秒前
FashionBoy应助温柔白玉采纳,获得10
10秒前
10秒前
一一一应助YueYue采纳,获得10
10秒前
邓佳鑫Alan应助YueYue采纳,获得10
10秒前
cy完成签到,获得积分10
10秒前
动人的易烟完成签到,获得积分20
11秒前
科研通AI6应助雪白绿旋采纳,获得10
11秒前
昵称发布了新的文献求助10
12秒前
wxt发布了新的文献求助10
12秒前
英吉利25发布了新的文献求助30
14秒前
鱼雷完成签到,获得积分10
15秒前
xjtuwang0618完成签到,获得积分10
17秒前
17秒前
18秒前
蓓蓓完成签到,获得积分10
19秒前
科研通AI6应助多情的忆之采纳,获得30
20秒前
Akim应助LaTeXer采纳,获得50
21秒前
阿黄完成签到,获得积分10
21秒前
21秒前
琳io发布了新的文献求助10
21秒前
方方完成签到,获得积分10
23秒前
Tong123发布了新的文献求助10
23秒前
唐唯一发布了新的文献求助10
23秒前
24秒前
25秒前
大模型应助方方采纳,获得10
26秒前
yao发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536758
求助须知:如何正确求助?哪些是违规求助? 4624342
关于积分的说明 14591700
捐赠科研通 4564904
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480738
关于科研通互助平台的介绍 1451989