Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures

砷酸盐 吸附 化学 水溶液 无机化学 金属有机骨架 地下水砷污染 亚砷酸盐 有机化学
作者
Zongchen Li,Xuemin Liu,Wei Jin,Qingsong Hu,Yaping Zhao
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:554: 692-704 被引量:258
标识
DOI:10.1016/j.jcis.2019.07.046
摘要

Arsenic species are regarded as typical water pollutants due to their toxicity. The chemical structures of arsenic species greatly influence their migration and transformation in the environment. Metal-organic frameworks (MOFs) are used as reliable adsorbents to control arsenic contamination, so it is urgently needed to study the effect of chemical structure of arsenic species during adsorption process. The adsorption behaviors of arsenate (As(V)) and its organic forms such as roxarsone (ROX), p-arsanilic acid (p-ASA) and dimethyl arsenate (DMA) by MIL-101(Fe), a type of highly porosity iron-based MOFs in aqueous environment were detailed investigated. The adsorption kinetics of those arsenic species on MIL-101(Fe) is rapid followed with pseudo-second-order kinetic model. MIL-101(Fe) exhibits excellent adsorption capacities for As(V), ROX, p-ASA and DMA with maximum adsorption capacities of 232.98, 507.97, 379.65 and 158.94 mg g-1, respectively. The formed FeOAs inner-sphere coordination between arsenic species and the incomplete-coordinated cationic Fe in the MIL-101(Fe) cluster is the primary adsorption mechanism based on FTIR and XPS analysis. Substituent aromatic units in ROX and p-ASA strengthen the adsorption on MIL-101(Fe) through hydrogen bonds and π-π stacking interaction, resulting in higher adsorption capacities far beyond that of As(V) and DMA. The reusability of MIL-101(Fe) is limited by the strong FeOAs coordination. These results confirm MIL-101(Fe) a reliable adsorbent to control the aqueous arsenic species contamination and emphasize the significant role of the chemical structure of arsenic speciation on adsorption performances of MOFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡发布了新的文献求助10
1秒前
岳粤完成签到,获得积分10
1秒前
2秒前
大神发布了新的文献求助10
2秒前
2秒前
2秒前
xjtu发布了新的文献求助10
3秒前
雾见春发布了新的文献求助30
3秒前
姚文超完成签到,获得积分20
4秒前
科研小菜发布了新的文献求助10
4秒前
岳粤发布了新的文献求助10
4秒前
4秒前
4秒前
yijiubingshi发布了新的文献求助10
5秒前
5秒前
wang完成签到,获得积分10
6秒前
果酱君完成签到,获得积分10
6秒前
6秒前
7秒前
zzz发布了新的文献求助10
7秒前
kingwill应助江南烟雨如笙采纳,获得20
8秒前
8秒前
zrk发布了新的文献求助10
8秒前
小毕可乐完成签到,获得积分10
9秒前
zc19891130完成签到,获得积分10
9秒前
烟花应助晗仔采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
小蘑菇应助zhui采纳,获得10
11秒前
11秒前
虚心的冷雪完成签到,获得积分20
12秒前
科研小白发布了新的文献求助10
12秒前
苹果萧发布了新的文献求助10
13秒前
zhihan发布了新的文献求助10
14秒前
Hao发布了新的文献求助10
14秒前
14秒前
Orange应助贾不可采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794