Optimal strategy selection approach to moving target defense based on Markov robust game

计算机科学 马尔可夫决策过程 无礼的 数学优化 博弈论 选择(遗传算法) 马尔可夫链 马尔可夫过程 战略 马尔可夫模型 人工智能 运筹学 机器学习 数学 数理经济学 统计
作者
Jinglei Tan,Cheng Lei,Hongqi Zhang,Yu-qiao Cheng
出处
期刊:Computers & Security [Elsevier BV]
卷期号:85: 63-76 被引量:27
标识
DOI:10.1016/j.cose.2019.04.013
摘要

Moving target defense, as a "game-changing" security technique for network warfare, thwarts the apparent certainty of attackers by transforming the network resource vulnerabilities. In order to enhance the defense of unknown security threats, a novel of optimal strategy selection approach to moving target defense based on Markov robust game is first proposed in this paper. Firstly, moving target defense model based on moving attack and exploration surfaces is defined. Thus, the random emerging of vulnerabilities is described, as well as the cognitive and behavioral difference of offensive and defensive sides caused by defensive transformation. Based on it, Markov robust game model is constructed to depict the multistage and multistate features of moving target defense confrontation, in which the unknown prior information in incomplete information assumption are illustrated by combining Markov decision process with robust game theory. Further, the existence of optimal strategy of Markov robust game is proved. Additionally, by equivalent converting optimal strategy selection into a nonlinear programming problem, an efficient optimal defensive strategy selection algorithm is designed. Finally, simulation and deduction of the proposed approach are given in the case study so as to demonstrate the feasibility of constructed game model and effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
su发布了新的文献求助10
刚刚
Milou完成签到,获得积分10
1秒前
1秒前
老阎应助科研通管家采纳,获得30
1秒前
orixero应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研白菜白完成签到,获得积分10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得20
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科研乞丐应助科研通管家采纳,获得20
2秒前
jjj应助科研通管家采纳,获得20
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得30
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
zpt完成签到,获得积分10
3秒前
爱学习的瑞瑞子完成签到 ,获得积分10
3秒前
pauchiu完成签到,获得积分0
3秒前
jay完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
xixi完成签到 ,获得积分10
6秒前
杜熙完成签到,获得积分10
6秒前
8秒前
9秒前
gougoutu发布了新的文献求助10
10秒前
liugm发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066