Independent Embedding Domain Based Two-Stage Robust Reversible Watermarking

稳健性(进化) 嵌入 数字水印 计算机科学 水印 领域(数学分析) 图像(数学) 算法 人工智能 数学 数学分析 生物化学 化学 基因
作者
Xiang Wang,Xiaolong Li,Qingqi Pei
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (8): 2406-2417 被引量:57
标识
DOI:10.1109/tcsvt.2019.2915116
摘要

Robustness is the most important factor that limits the practical application of reversible watermarking. To deal with this issue, several robust reversible watermarking (RRW) techniques have been proposed. Among them, the two-stage RRW framework proposed by Coltuc et al. is a promising one. In the first state of this framework, a robust watermark is embedded into the cover image to provide robustness, and then in the second stage, the information enabling revert the robust embedding is reversibly embedded into the already marked image to guarantee the reversibility. However, because of using the same area for these two embedding stages, the robustness in the first stage is seriously weakened by the reversible embedding. As a result, this elegant method is not effective as expected. Based on this consideration, this paper proposes an independent embedding domain (ED)-based two-stage RRW. The cover image is first transformed into two independent EDs, and then the robust and reversible watermarks are embedded into each domain separately. The carrier derived from the first embedding stage that carrying the robust watermark will not change after the reversible embedding, and thus, the robustness of the first stage is well preserved. By the proposed method, the embedding performance of the original two-stage RRW is significantly enhanced. Moreover, the proposed method is experimentally verified better than some other state-of-the-art RRW methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jzh6666发布了新的文献求助10
刚刚
2秒前
xiao完成签到,获得积分10
2秒前
2秒前
6秒前
zdy完成签到 ,获得积分10
7秒前
asdfqwer应助weishen采纳,获得10
9秒前
一叶之秋发布了新的文献求助10
12秒前
13秒前
13秒前
桐桐完成签到,获得积分0
13秒前
流口水完成签到,获得积分10
14秒前
所所应助科研狗采纳,获得10
14秒前
luffy发布了新的文献求助10
16秒前
华仔应助狂野世立采纳,获得10
16秒前
17秒前
米斯特刘发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
xuxu1999完成签到,获得积分10
19秒前
凡仔发布了新的文献求助10
22秒前
孙伟健发布了新的文献求助10
23秒前
研友_LMBlAn发布了新的文献求助10
23秒前
小吴发布了新的文献求助10
25秒前
25秒前
鲜艳的寄松完成签到,获得积分10
26秒前
孙伟健完成签到,获得积分10
28秒前
28秒前
传奇3应助狂野世立采纳,获得10
29秒前
30秒前
31秒前
32秒前
隐形曼青应助凡仔采纳,获得10
32秒前
33秒前
稳重的若雁完成签到,获得积分10
33秒前
Akim应助ff采纳,获得10
34秒前
月野兔完成签到,获得积分10
35秒前
科研通AI2S应助小吴采纳,获得10
35秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312191
求助须知:如何正确求助?哪些是违规求助? 2944810
关于积分的说明 8521543
捐赠科研通 2620532
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115