Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging

逻辑回归 医学 磁共振成像 脑膜瘤 接收机工作特性 人工智能 机器学习 朴素贝叶斯分类器 支持向量机 放射科 核医学 计算机科学
作者
Andrew T. Hale,David P. Stonko,Li Wang,Megan K. Strother,Lola B. Chambless
出处
期刊:Neurosurgical Focus [American Association of Neurological Surgeons]
卷期号:45 (5): E4-E4 被引量:57
标识
DOI:10.3171/2018.8.focus18191
摘要

OBJECTIVEPrognostication and surgical planning for WHO grade I versus grade II meningioma requires thoughtful decision-making based on radiographic evidence, among other factors. Although conventional statistical models such as logistic regression are useful, machine learning (ML) algorithms are often more predictive, have higher discriminative ability, and can learn from new data. The authors used conventional statistical models and an array of ML algorithms to predict atypical meningioma based on radiologist-interpreted preoperative MRI findings. The goal of this study was to compare the performance of ML algorithms to standard statistical methods when predicting meningioma grade.METHODSThe cohort included patients aged 18-65 years with WHO grade I (n = 94) and II (n = 34) meningioma in whom preoperative MRI was obtained between 1998 and 2010. A board-certified neuroradiologist, blinded to histological grade, interpreted all MR images for tumor volume, degree of peritumoral edema, presence of necrosis, tumor location, presence of a draining vein, and patient sex. The authors trained and validated several binary classifiers: k-nearest neighbors models, support vector machines, naïve Bayes classifiers, and artificial neural networks as well as logistic regression models to predict tumor grade. The area under the curve-receiver operating characteristic curve was used for comparison across and within model classes. All analyses were performed in MATLAB using a MacBook Pro.RESULTSThe authors included 6 preoperative imaging and demographic variables: tumor volume, degree of peritumoral edema, presence of necrosis, tumor location, patient sex, and presence of a draining vein to construct the models. The artificial neural networks outperformed all other ML models across the true-positive versus false-positive (receiver operating characteristic) space (area under curve = 0.8895).CONCLUSIONSML algorithms are powerful computational tools that can predict meningioma grade with great accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
5秒前
yeahway发布了新的文献求助10
5秒前
科研通AI5应助LY采纳,获得10
6秒前
7秒前
7秒前
8秒前
万幸鹿发布了新的文献求助10
9秒前
李爱国应助谨慎的夏采纳,获得10
9秒前
脑洞疼应助ke采纳,获得10
9秒前
10秒前
大胆安柏发布了新的文献求助10
11秒前
kunny完成签到 ,获得积分10
12秒前
12秒前
两面性完成签到,获得积分10
13秒前
科研通AI2S应助林一采纳,获得10
14秒前
Dolphin发布了新的文献求助10
14秒前
maxinghrr完成签到,获得积分0
15秒前
科研通AI5应助和道一文字采纳,获得10
15秒前
陈陈发布了新的文献求助10
16秒前
研友_Raven完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
差劲先生完成签到,获得积分10
20秒前
21秒前
明理小土豆完成签到,获得积分10
22秒前
和道一文字完成签到,获得积分10
22秒前
24秒前
25秒前
ryeong发布了新的文献求助10
25秒前
谨慎的夏发布了新的文献求助10
26秒前
save发布了新的文献求助10
27秒前
YYJ发布了新的文献求助10
29秒前
健壮的弼完成签到,获得积分10
31秒前
31秒前
32秒前
Orange应助复杂的宛采纳,获得10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734558
求助须知:如何正确求助?哪些是违规求助? 3278480
关于积分的说明 10009777
捐赠科研通 2995112
什么是DOI,文献DOI怎么找? 1643222
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196