Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network

预言 卷积神经网络 特征提取 断层(地质) 灵活性(工程) 工程类 人工智能 人工神经网络 可靠性(半导体) 计算机科学 模式识别(心理学) 深度学习 特征(语言学) 机器学习 可靠性工程 物理 地质学 统计 哲学 量子力学 功率(物理) 地震学 语言学 数学
作者
Chunzhi Wu,Pengcheng Jiang,Chen Ding,Fuzhou Feng,Chen Tang
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:108: 53-61 被引量:209
标识
DOI:10.1016/j.compind.2018.12.001
摘要

Fault diagnosis of rotating machinery plays a significant role in the reliability and safety of modern industrial systems. The traditional fault diagnosis methods usually need manually extracting the features from raw sensor data before classifying them with pattern recognition models. This requires much professional knowledge and complex feature extraction, only to cause results in a poor flexibility of the model, which only applies to the diagnosis of a fault in particular equipment. In recent years, deep learning has developed rapidly, and great achievements have been made in image analysis, speech recognition and natural language processing. However, its application in fault diagnosis of rotating machinery is still at the initial stage. In order to solve the problem of end-to-end fault diagnosis, this paper focuses on developing a convolutional neural network to learn features directly from the original vibration signals and then diagnose faults. The effectiveness of the proposed method is validated through PHM (Prognostics and Health Management) 2009 gearbox challenge data and a planetary gearbox test rig. Compared with the other three traditional methods, the results show that the one-dimensional convolutional neural network (1-DCNN) model has higher accuracy for fixed-shaft gearbox and planetary gearbox fault diagnosis than that of the traditional diagnostic ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
soini完成签到,获得积分10
刚刚
刚刚
桐桐应助派大星采纳,获得10
刚刚
刚刚
刚刚
禹代秋完成签到,获得积分10
1秒前
等你下课发布了新的文献求助10
2秒前
张起灵完成签到 ,获得积分10
2秒前
3秒前
班小班完成签到,获得积分10
3秒前
任一笑发布了新的文献求助10
3秒前
4秒前
wsf2023发布了新的文献求助10
5秒前
墙头的草发布了新的文献求助10
5秒前
rio发布了新的文献求助10
5秒前
7秒前
斯文尔阳发布了新的文献求助10
8秒前
颖火虫发布了新的文献求助10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
酷波er应助任一笑采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
dong应助科研通管家采纳,获得10
9秒前
郜雨寒完成签到,获得积分10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得30
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
sjckn应助科研通管家采纳,获得30
9秒前
clyde凌丫完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
所所应助马康辉采纳,获得30
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214