氢解
双金属片
催化作用
氧化钴
微球
氧化物
化学
5-羟甲基糠醛
材料科学
钴
核化学
化学工程
无机化学
金属
吸附
选择性
有机化学
工程类
作者
Zhi Gao,Guoli Fan,Mengran Liu,Lan Yang,Feng Li
标识
DOI:10.1016/j.apcatb.2018.06.026
摘要
Abstract Currently, renewable biomass-derived energy sources and related transformation technologies are attracting numerous attentions due to the rapid consumption of fossil fuels and resulting increasing environmental pollution. Herein, a new dandelion-like cobalt oxide (CoOx) microsphere-supported bimetallic RuCo catalyst was fabricated by a simple one-pot embedding method and employed for the 5-hydroxymethylfurfural (HMF) hydrogenolysis to produce liquid 2,5-dimethylfuran (DMF) biofuel. It was found that bimetallic RuCo nanoparticles (NPs) with the average size of about 2.5 nm could homogeneously disperse on flower-like CoOx microspheres possessing abundant surface defects (i.e. oxygen vacancies and Co2+ species) simultaneously constructed. As-fabricated RuCo/CoOx catalyst exhibited excellent catalytic performance in above reaction, along with a quite high DMF yield of 96.5% at a high HMF/Ru molar ratio of 252.7, which was corelated with the unique synergy between bimetallic RuCo NPs and abundant surface defects at the metal-support interface, as well as the enhanced hydrogen spillover effect and the dandelion-like superstructure of the catalyst. Additionally, the strong interactions between RuCo species and the CoOx matrix in the RuCo/CoOx significantly prevented RuCo NPs from migration, aggregation, and leaching during the reaction. The present findings offer a new approach for designing other highly efficient and stable bimetallic catalysts applied in a variety of heterogeneous catalytic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI