Learning Deep Network Representations with Adversarially Regularized Autoencoders

计算机科学 地点 嵌入 推论 一般化 人工智能 顶点(图论) 理论计算机科学 代表(政治) 机器学习 数学 图形 哲学 数学分析 法学 政治 语言学 政治学
作者
Wenchao Yu,Cheng Zheng,Wei Cheng,Charų C. Aggarwal,Dongjin Song,Bo Zong,Haifeng Chen,Wei Wang
标识
DOI:10.1145/3219819.3220000
摘要

The problem of network representation learning, also known as network embedding, arises in many machine learning tasks assuming that there exist a small number of variabilities in the vertex representations which can capture the "semantics" of the original network structure. Most existing network embedding models, with shallow or deep architectures, learn vertex representations from the sampled vertex sequences such that the low-dimensional embeddings preserve the locality property and/or global reconstruction capability. The resultant representations, however, are difficult for model generalization due to the intrinsic sparsity of sampled sequences from the input network. As such, an ideal approach to address the problem is to generate vertex representations by learning a probability density function over the sampled sequences. However, in many cases, such a distribution in a low-dimensional manifold may not always have an analytic form. In this study, we propose to learn the network representations with adversarially regularized autoencoders (NetRA). NetRA learns smoothly regularized vertex representations that well capture the network structure through jointly considering both locality-preserving and global reconstruction constraints. The joint inference is encapsulated in a generative adversarial training process to circumvent the requirement of an explicit prior distribution, and thus obtains better generalization performance. We demonstrate empirically how well key properties of the network structure are captured and the effectiveness of NetRA on a variety of tasks, including network reconstruction, link prediction, and multi-label classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陆晓亦完成签到,获得积分10
1秒前
细心水绿完成签到,获得积分10
2秒前
氯丙嗪完成签到 ,获得积分0
2秒前
3秒前
隐形曼青应助一年5篇采纳,获得10
3秒前
4秒前
郭佳完成签到,获得积分10
4秒前
6秒前
汉堡包应助CC悟了采纳,获得10
7秒前
qweasdzxcqwe发布了新的文献求助10
8秒前
8秒前
9秒前
自己发布了新的文献求助10
9秒前
田様应助欣欣子采纳,获得10
10秒前
12秒前
微笑的小刺猬完成签到 ,获得积分10
13秒前
Hello应助xjy采纳,获得10
15秒前
15秒前
16秒前
是否跨凤乘龙完成签到,获得积分10
16秒前
小二郎应助自己采纳,获得10
16秒前
sandra完成签到,获得积分10
17秒前
独特冰安发布了新的文献求助10
18秒前
只A不B应助十二采纳,获得30
19秒前
19秒前
999999完成签到,获得积分10
19秒前
Grace完成签到,获得积分10
20秒前
风趣的老太应助开朗洋葱采纳,获得10
21秒前
21秒前
21秒前
大模型应助qweasdzxcqwe采纳,获得10
22秒前
23秒前
23秒前
一年5篇发布了新的文献求助10
24秒前
研友_VZG7GZ应助ywl采纳,获得10
26秒前
26秒前
26秒前
LaTeXer应助友好寻真采纳,获得50
26秒前
澡雪发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390