Learning Deep Network Representations with Adversarially Regularized Autoencoders

计算机科学 地点 嵌入 推论 一般化 人工智能 顶点(图论) 理论计算机科学 代表(政治) 机器学习 数学 图形 哲学 数学分析 法学 政治 语言学 政治学
作者
Wenchao Yu,Cheng Zheng,Wei Cheng,Charų C. Aggarwal,Dongjin Song,Bo Zong,Haifeng Chen,Wei Wang
标识
DOI:10.1145/3219819.3220000
摘要

The problem of network representation learning, also known as network embedding, arises in many machine learning tasks assuming that there exist a small number of variabilities in the vertex representations which can capture the "semantics" of the original network structure. Most existing network embedding models, with shallow or deep architectures, learn vertex representations from the sampled vertex sequences such that the low-dimensional embeddings preserve the locality property and/or global reconstruction capability. The resultant representations, however, are difficult for model generalization due to the intrinsic sparsity of sampled sequences from the input network. As such, an ideal approach to address the problem is to generate vertex representations by learning a probability density function over the sampled sequences. However, in many cases, such a distribution in a low-dimensional manifold may not always have an analytic form. In this study, we propose to learn the network representations with adversarially regularized autoencoders (NetRA). NetRA learns smoothly regularized vertex representations that well capture the network structure through jointly considering both locality-preserving and global reconstruction constraints. The joint inference is encapsulated in a generative adversarial training process to circumvent the requirement of an explicit prior distribution, and thus obtains better generalization performance. We demonstrate empirically how well key properties of the network structure are captured and the effectiveness of NetRA on a variety of tasks, including network reconstruction, link prediction, and multi-label classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nitric_Oxide应助鲤鱼不二采纳,获得10
刚刚
1秒前
2秒前
dartrible发布了新的文献求助10
3秒前
OvOlive完成签到,获得积分10
3秒前
烟花应助真是麻烦采纳,获得10
3秒前
dd发布了新的文献求助10
4秒前
Wjh123456完成签到,获得积分10
4秒前
6秒前
感动芷珍发布了新的文献求助30
6秒前
黄金天下完成签到,获得积分10
7秒前
marui完成签到,获得积分10
7秒前
果力成完成签到,获得积分10
8秒前
赵峻发布了新的文献求助10
9秒前
9秒前
多多洛完成签到 ,获得积分20
10秒前
Apple发布了新的文献求助10
12秒前
可可发布了新的文献求助10
14秒前
15秒前
良辰应助冰糖葫芦不加糖采纳,获得10
16秒前
xxx1234完成签到,获得积分10
16秒前
情怀应助小小灯笼采纳,获得10
17秒前
Kncc完成签到 ,获得积分10
18秒前
18秒前
坦率的寻双完成签到,获得积分10
20秒前
21秒前
congguitar完成签到,获得积分10
22秒前
22秒前
22秒前
22秒前
qin希望应助charles采纳,获得30
22秒前
桂花完成签到 ,获得积分10
23秒前
24秒前
慕青应助miku1采纳,获得10
25秒前
25秒前
sdahjjyk发布了新的文献求助10
26秒前
xiaou完成签到,获得积分10
26秒前
花花发布了新的文献求助10
27秒前
枯木完成签到,获得积分10
27秒前
不配.应助纪问安采纳,获得20
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825