已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generative adversarial network with transformer generator for boosting ECG classification

心跳 计算机科学 人工智能 深度学习 Boosting(机器学习) 人工神经网络 变压器 生成语法 模式识别(心理学) 机器学习 电压 工程类 计算机安全 电气工程
作者
Yi Xia,Yangyang Xu,Peng Chen,Jun Zhang,Yongliang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104276-104276 被引量:49
标识
DOI:10.1016/j.bspc.2022.104276
摘要

• A transformer and convolution-based generative adversarial network (TCGAN) is proposed for ECG generation. • Our TCGAN can generate ECG heartbeats with the waveforms being close to their real counterparts. • The proposed TCGAN model is utilized to alleviate the data-imbalance problem. • The overall accuracy of the proposed method is 94.69% in classifying heartbeats with type N, S, V, and F. Arrhythmia is an important group of cardiovascular diseases, which can suddenly attack and cause sudden death, or continue to affect the heart and cause its failure. Electrocardiogram (ECG) is an important tool for detecting arrhythmia, but its analysis is time-consuming and dependent on extensive expertise. Deep neural networks have become a popular technique for automatically tracing ECG signals, and demonstrate great potentials to be more competent than human experts. However, most life-threatening arrhythmias are extremely rare, limiting the amount of examples available to train deep learning models. To address such a data imbalance problem, this study proposed a novel data augmentation protocol, i.e., a transformer and convolution-based generative adversarial network (TCGAN). Transformer is a recently proposed deep neural network based on the self-attention mechanism, which has powerful capabilities in learning the relationships between sequence elements. The proposed TCGAN is utilized to generate heartbeat signals per type, which are then added to the original dataset to alleviate the data-imbalance problem. Experimental results on the MIT-BIH arrhythmia database demonstrate that our TCGAN can generate ECG heartbeats with the waveforms being close to their real counterparts. In the inter-patient heartbeat classification paradigm, the overall accuracy of the proposed method is 94.69% in classifying heartbeats with type N, S, V, and F. Furthermore, the comparison with several state-of-the-art heartbeat classification systems demonstrates the effectiveness of the proposed TCGAN in enhancing the ECG dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8yN60L发布了新的文献求助10
1秒前
GRACE发布了新的文献求助10
2秒前
2秒前
玻璃球完成签到 ,获得积分10
2秒前
牛马自己push完成签到 ,获得积分10
3秒前
正直夜安完成签到 ,获得积分10
4秒前
小飞飞发布了新的文献求助10
4秒前
宋祝福完成签到 ,获得积分10
5秒前
古今奇观完成签到 ,获得积分10
5秒前
ANmin完成签到 ,获得积分10
6秒前
如约而至完成签到 ,获得积分10
6秒前
小二郎应助凌辰采纳,获得10
7秒前
dddd完成签到 ,获得积分10
7秒前
Tsuzuri完成签到,获得积分10
7秒前
www完成签到 ,获得积分10
8秒前
9秒前
微小陌发布了新的文献求助30
11秒前
11秒前
13秒前
Pauline完成签到 ,获得积分10
14秒前
摩诃萨完成签到,获得积分10
18秒前
Crystal完成签到 ,获得积分10
20秒前
张小美发布了新的文献求助10
21秒前
23秒前
勤奋幻柏完成签到,获得积分10
26秒前
光能使者完成签到,获得积分10
26秒前
Lighten完成签到 ,获得积分10
27秒前
银海里的玫瑰_完成签到 ,获得积分10
28秒前
28秒前
风中琦完成签到 ,获得积分10
29秒前
大模型应助jjdbqml采纳,获得10
32秒前
32秒前
芝士奶盖有点咸完成签到 ,获得积分10
32秒前
33秒前
赘婿应助张小美采纳,获得10
33秒前
34秒前
无条件完成签到,获得积分10
34秒前
汤泽琪发布了新的文献求助10
34秒前
迷人的天抒应助shinn采纳,获得10
35秒前
马马完成签到 ,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629