Generative adversarial network with transformer generator for boosting ECG classification

心跳 计算机科学 人工智能 深度学习 Boosting(机器学习) 人工神经网络 变压器 生成语法 模式识别(心理学) 机器学习 电压 工程类 计算机安全 电气工程
作者
Yi Xia,Yangyang Xu,Peng Chen,Jun Zhang,Yongliang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104276-104276 被引量:44
标识
DOI:10.1016/j.bspc.2022.104276
摘要

• A transformer and convolution-based generative adversarial network (TCGAN) is proposed for ECG generation. • Our TCGAN can generate ECG heartbeats with the waveforms being close to their real counterparts. • The proposed TCGAN model is utilized to alleviate the data-imbalance problem. • The overall accuracy of the proposed method is 94.69% in classifying heartbeats with type N, S, V, and F. Arrhythmia is an important group of cardiovascular diseases, which can suddenly attack and cause sudden death, or continue to affect the heart and cause its failure. Electrocardiogram (ECG) is an important tool for detecting arrhythmia, but its analysis is time-consuming and dependent on extensive expertise. Deep neural networks have become a popular technique for automatically tracing ECG signals, and demonstrate great potentials to be more competent than human experts. However, most life-threatening arrhythmias are extremely rare, limiting the amount of examples available to train deep learning models. To address such a data imbalance problem, this study proposed a novel data augmentation protocol, i.e., a transformer and convolution-based generative adversarial network (TCGAN). Transformer is a recently proposed deep neural network based on the self-attention mechanism, which has powerful capabilities in learning the relationships between sequence elements. The proposed TCGAN is utilized to generate heartbeat signals per type, which are then added to the original dataset to alleviate the data-imbalance problem. Experimental results on the MIT-BIH arrhythmia database demonstrate that our TCGAN can generate ECG heartbeats with the waveforms being close to their real counterparts. In the inter-patient heartbeat classification paradigm, the overall accuracy of the proposed method is 94.69% in classifying heartbeats with type N, S, V, and F. Furthermore, the comparison with several state-of-the-art heartbeat classification systems demonstrates the effectiveness of the proposed TCGAN in enhancing the ECG dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgc发布了新的文献求助10
2秒前
3秒前
zhuzhu发布了新的文献求助20
4秒前
yolo完成签到,获得积分10
5秒前
WaNgBO完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
HU完成签到 ,获得积分10
8秒前
笨笨从菡发布了新的文献求助30
8秒前
芜湖起飞发布了新的文献求助10
10秒前
yang发布了新的文献求助10
11秒前
pluto应助清新的苑博采纳,获得10
12秒前
Isaac完成签到,获得积分10
12秒前
顾矜应助爱笑夜蕾采纳,获得10
13秒前
程勋航发布了新的文献求助10
13秒前
萤阳完成签到,获得积分10
13秒前
14秒前
神勇的小懒虫完成签到,获得积分10
14秒前
15秒前
果粒程完成签到 ,获得积分10
16秒前
自由凝竹完成签到,获得积分10
16秒前
笨笨从菡完成签到,获得积分20
16秒前
16秒前
陈晗予完成签到,获得积分10
17秒前
鱼0306发布了新的文献求助10
19秒前
宋宋完成签到,获得积分10
19秒前
99发布了新的文献求助10
19秒前
20秒前
香蕉觅云应助程勋航采纳,获得10
20秒前
i1发布了新的文献求助10
20秒前
21秒前
21秒前
丘比特应助小白采纳,获得10
21秒前
Berniece发布了新的文献求助10
22秒前
CipherSage应助organicboy采纳,获得10
22秒前
22秒前
美好斓发布了新的文献求助50
23秒前
24秒前
爱笑夜蕾发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542895
求助须知:如何正确求助?哪些是违规求助? 3120176
关于积分的说明 9341944
捐赠科研通 2818272
什么是DOI,文献DOI怎么找? 1549447
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978