Generative adversarial network with transformer generator for boosting ECG classification

心跳 计算机科学 人工智能 深度学习 Boosting(机器学习) 人工神经网络 变压器 生成语法 模式识别(心理学) 机器学习 电压 工程类 计算机安全 电气工程
作者
Yi Xia,Yangyang Xu,Peng Chen,Jun Zhang,Yongliang Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104276-104276 被引量:49
标识
DOI:10.1016/j.bspc.2022.104276
摘要

• A transformer and convolution-based generative adversarial network (TCGAN) is proposed for ECG generation. • Our TCGAN can generate ECG heartbeats with the waveforms being close to their real counterparts. • The proposed TCGAN model is utilized to alleviate the data-imbalance problem. • The overall accuracy of the proposed method is 94.69% in classifying heartbeats with type N, S, V, and F. Arrhythmia is an important group of cardiovascular diseases, which can suddenly attack and cause sudden death, or continue to affect the heart and cause its failure. Electrocardiogram (ECG) is an important tool for detecting arrhythmia, but its analysis is time-consuming and dependent on extensive expertise. Deep neural networks have become a popular technique for automatically tracing ECG signals, and demonstrate great potentials to be more competent than human experts. However, most life-threatening arrhythmias are extremely rare, limiting the amount of examples available to train deep learning models. To address such a data imbalance problem, this study proposed a novel data augmentation protocol, i.e., a transformer and convolution-based generative adversarial network (TCGAN). Transformer is a recently proposed deep neural network based on the self-attention mechanism, which has powerful capabilities in learning the relationships between sequence elements. The proposed TCGAN is utilized to generate heartbeat signals per type, which are then added to the original dataset to alleviate the data-imbalance problem. Experimental results on the MIT-BIH arrhythmia database demonstrate that our TCGAN can generate ECG heartbeats with the waveforms being close to their real counterparts. In the inter-patient heartbeat classification paradigm, the overall accuracy of the proposed method is 94.69% in classifying heartbeats with type N, S, V, and F. Furthermore, the comparison with several state-of-the-art heartbeat classification systems demonstrates the effectiveness of the proposed TCGAN in enhancing the ECG dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕夜完成签到,获得积分10
1秒前
声声慢发布了新的文献求助10
2秒前
3秒前
bkagyin应助Feng5945采纳,获得10
3秒前
浮浮世世发布了新的文献求助80
3秒前
科目三应助liz采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
鹿小新完成签到 ,获得积分0
7秒前
8秒前
高兴的大米完成签到,获得积分10
8秒前
郭丽莹发布了新的文献求助30
10秒前
12秒前
always发布了新的文献求助30
13秒前
qiuqiu0999完成签到,获得积分10
13秒前
505完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
钮钴禄鬼鬼完成签到 ,获得积分10
16秒前
16秒前
Criminology34应助无语的成仁采纳,获得10
17秒前
Criminology34应助无语的成仁采纳,获得10
17秒前
linn发布了新的文献求助10
17秒前
Feng5945发布了新的文献求助10
18秒前
千羽完成签到,获得积分10
18秒前
三三得九完成签到 ,获得积分10
18秒前
19秒前
科研通AI6.1应助明理听云采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
always完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
汉堡包应助111采纳,获得10
26秒前
27秒前
qiuqiu0999发布了新的文献求助10
28秒前
星辰大海应助随机采纳,获得10
28秒前
28秒前
大气的冷亦完成签到,获得积分10
29秒前
脑洞疼应助Feng5945采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240