Intrinsic Hydrogen‐Bond Donors‐Lined Organophosphate Superionic Nanochannels Levering High‐Rate‐Endurable Aqueous Zn Batteries

材料科学 阳极 过电位 水溶液 氢键 密度泛函理论 纳米技术 无机化学 化学工程 电化学 物理化学 计算化学 有机化学 分子 电极 化学 工程类
作者
Jiangfeng He,Yongchao Tang,Guigui Liu,Hongqing Li,Minghui Ye,Yufei Zhang,Qi Yang,Xiaoqing Liu,Chengchao Li
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:12 (46) 被引量:71
标识
DOI:10.1002/aenm.202202661
摘要

Abstract Organic/inorganic hybrid artificial functional layer (AFL) designs of Zn anode have witnessed good progress in stabilizing the Zn anode. However, such processes remain uncapable of simultaneously providing durable protection and fast Zn 2+ migration, especially in high‐rate scenarios. Herein, intrinsic hydrogen‐bond donor (HBD)‐lined organophosphate superionic nanochannels are initially engineered to address this challenge. Due to unique ordered nanochannels with a smaller diameter than that of hydrated Zn 2+ ions and polyanions, hydroxymethyl Zn phosphates (Zn(O 3 PCH 2 OH, ZnOPC) are first considered for AFL design. The small size can provide an interception for polyanions. Density functional theory calculation indicates that ZnOPC nanochannels possess a 35% lower Zn 2+ migration energy barrier than conventional Zn phosphate, highly consistent with tested results. Additionally, as HBDs, rich ‐CH 2 OH groups located at nanochannels impose a targeted hydrogen‐bonding interaction with water molecules. Consequently, at an ultrahigh current density up to 50 mA cm −2 , the Zn@ZnOPC anode shows a 36% lower overpotential than that of the bare Zn anode. As‐assembled Zn @ ZnOPC//NaV 3 O 8 · 1.5H 2 O full cells exhibit an ultralong lifespan of 20 000 cycles at 20 A g −1 , with a low capacity‐decay of 0.016% per cycle. This work features a targeted hydrogen bonding‐enhanced desolvation effect occurring in organophosphate superionic nanochannels, which would enlighten to explore reliable fast‐charging aqueous batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
ahq完成签到,获得积分10
2秒前
DDDD发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
sprileye完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
小猪快跑完成签到,获得积分10
6秒前
6秒前
科研通AI6应助阿季采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
niko发布了新的文献求助10
6秒前
niko发布了新的文献求助10
7秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
niko发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569592
求助须知:如何正确求助?哪些是违规求助? 4654253
关于积分的说明 14710045
捐赠科研通 4595902
什么是DOI,文献DOI怎么找? 2522102
邀请新用户注册赠送积分活动 1493376
关于科研通互助平台的介绍 1463987