脂肪生成
化学
间充质干细胞
过氧化物酶体
过氧化物酶体增殖物激活受体
基因敲除
骨保护素
细胞分化
细胞生物学
受体
内分泌学
内科学
体外
生物化学
生物
细胞凋亡
激活剂(遗传学)
医学
基因
作者
Hui Qin,Yuxin Niu,Haiyang Luan,Ming‐Han Li,Lu Zheng,Yifan Pan,Wei Liu
标识
DOI:10.1016/j.envint.2022.107584
摘要
As the primary molecular target, there is still a gap between the peroxisome proliferator-activated receptors (PPARs) regulation and the adverse health effects caused by per- and polyfluoroalkyl substances (PFASs). The effects of PFASs on cellular differentiation regulated by PPARs is likely significant given the association of PFASs exposure with obesity and decreased bone density. Human mesenchymal stem cells (hMSCs) were used as an in vitro model to assess the roles of PPAR subtypes in the multipotent differentiation of hMSCs affected by perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and their replacement compounds. PFASs increased the expression of three PPAR subtypes in proliferating and differentiating hMSCs. Meanwhile, PFOS and PFOA decreased osteogenesis, enhanced adipogenesis, and increased bone turnover in hMSCs. Similarly, PFOA alternatives, hexafluoropropylene oxide dimer acid (HFPO-DA) and hexafluoropropylene oxide trimer acid (HFPO-TA), exhibited similar or even higher potency in affecting stem cell differentiation compared with PFOA. Perfluorohexanesulfonate (PFHxS) inhibited osteogenesis with comparable potency to PFOS. In contrast, 6:2 chlorinated poly-fluoroalkyl ether sulfonate (6:2Cl-PFESA) enhanced osteogenesis. PPARβ expression is significantly positively correlated with osteogenesis and osteoprotegerin (OPG) secretion in 6:2Cl-PFESA treated cells. shRNA knockdown of PPARβ remarkably reversed the osteogenic effects of 6:2Cl-PFESA and enhanced the adipogenic effects of the six chemicals. The results suggested that the adverse effects and relative potency of PFASs on the multipotent differentiation of hMSCs were dependent on the integrated action of the three PPAR subtypes, which facilitates a better understanding of the molecular initiating events of PFASs. The present study may well explain the mechanism of the decreased bone density and increased obesity incidence among those exposed to legacy PFASs, and indicates the necessity of further health risk assessment for the alternatives.
科研通智能强力驱动
Strongly Powered by AbleSci AI