Multiple effects driven by pulsed electric field to enhance the catalytic efficiency of the mussel-inspired proteolytic membrane in protein hydrolysis

贻贝 电场 水解 化学 催化作用 化学工程 色谱法 材料科学 生物化学 生物 工程类 生态学 物理 量子力学
作者
Zhe Chen,Shiyu Zhu,Haoran Zhang,Sheng Wang,Krystian Marszałek,Zhenzhou Zhu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:453: 139792-139792 被引量:3
标识
DOI:10.1016/j.cej.2022.139792
摘要

Although the immobilization of enzymes on the membrane is an effective method to improve enzyme stability and reusability, the immobilized enzyme also causes low activity and reduces substrate accessibility. In order to overcome these shortcomings and provide a viable proteolytic membrane with increasing enzyme activity and substrate accessibility, a pulsed electric field (PEF)-assisted proteolytic membrane (PAPM) was constructed by immobilizing PEF-treated pepsin on PDA and PEI co-deposited ultrafiltration membrane. The PEF-treated pepsin endowed high activity (165.33 ± 2.31 %) and charge amount (−3.95 mV), with stable and uniform particle size (39 nm). These phenomena were attributed to the multiple effects driven by PEF, including the diffusion effect, electrolysis reactions, and microstructural regulation. Specifically, PAPM retained 80 % of original pepsin activity and enhanced 25 % pepsin activity compared to the conventional proteolytic membrane (PM). Such improvement can be ascribed to two factors: Firstly, PEF regulated pepsin microstructure to an optimal structure (4.6 % increase of the α-helix and 4.0 % reduction of the random coil) for pepsin immobilization. Secondly, PEF changed pepsin charge properties from positive (+1.62 mV) to negative (−3.95 mV), while substrate charges were positive. Heterogeneous charge interactions between pepsin and substrates increased the accessibility of the substrate to immobilized pepsin, effectively promoting enzymatic reactions. This study offers a feasible method to prepare the proteolytic membrane in protein hydrolysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助谦让的含海采纳,获得10
刚刚
华华发布了新的文献求助10
刚刚
刚刚
Orange应助命运的X号采纳,获得10
刚刚
云澈完成签到,获得积分10
2秒前
风趣的觅山完成签到,获得积分10
2秒前
打打应助SCI采纳,获得50
2秒前
pinging应助Wang采纳,获得10
2秒前
2秒前
灵巧荆发布了新的文献求助10
3秒前
和谐续完成签到 ,获得积分10
3秒前
李健应助是天使呢采纳,获得10
3秒前
3秒前
4秒前
香菜兔子完成签到,获得积分10
4秒前
茶艺大师づ完成签到,获得积分0
4秒前
蓝愿完成签到,获得积分10
4秒前
5秒前
努力的小狗屁完成签到,获得积分10
5秒前
5秒前
慕青应助彬彬采纳,获得10
6秒前
飘逸蘑菇关注了科研通微信公众号
6秒前
八十关注了科研通微信公众号
7秒前
7秒前
7秒前
8秒前
9秒前
摸鱼摸鱼摸摸鱼完成签到,获得积分10
9秒前
xiaoputaor完成签到 ,获得积分10
10秒前
万能图书馆应助yana采纳,获得20
11秒前
兽医12138完成签到 ,获得积分10
11秒前
苏苏发布了新的文献求助10
11秒前
烯灯完成签到,获得积分10
12秒前
慕青应助哈哈采纳,获得10
12秒前
Ava应助朴素的鸡采纳,获得10
12秒前
852应助沧海泪采纳,获得10
12秒前
tao发布了新的文献求助10
12秒前
苏兴龙发布了新的文献求助10
12秒前
爱思考的我完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794