Optimization of graphite/silicon-based composite electrodes for lithium ion batteries regarding the interdependencies of active and inactive materials

材料科学 电极 石墨 锂(药物) 复合数 导电体 复合材料 集电器 纳米技术 化学工程 光电子学 化学 物理化学 内分泌学 工程类 医学 电解质
作者
Karina Ambrock,Mirco Ruttert,Andrey Vinograd,Bastian Billmann,Xiaofei Yang,Tobias Placke,Martin Winter,Markus Börner
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:552: 232252-232252 被引量:12
标识
DOI:10.1016/j.jpowsour.2022.232252
摘要

Due to its high theoretical capacity, silicon is a promising active material candidate for the negative electrode of lithium ion batteries. One way to reduce the severe degradation of silicon during charge/discharge cycling, is to use blends of different active materials and a well-balanced ratio of active and inactive materials. To ensure high-energy densities while still maintaining good electronic conductivity and ionic mobility, the necessity of nano-scale conductive carbons within a graphite/silicon composite was evaluated in this study. In particular, the correlation of silicon particle size and the presence of conductive additive was studied in electrodes, predominantly consisting of graphite (15 wt% silicon). Carbon black as conductive additive has a high contact surface area, which can enhance the electronic conductivity within the electrode and thus the rate capability, however, it can also propagate parasitic side reactions. It was determined that composite electrodes containing micron-sized silicon particles depend on the addition of conductive additives with regard to electrochemical performance. Due to high contact area and small transport distances, electrodes based on nano-sized silicon showed comparable capacity retention and a higher specific discharge capacity. Omitting conductive particles from these composite electrodes allowed lower binder amounts, while maintaining a good mechanical electrode integrity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gilana发布了新的文献求助20
刚刚
刚刚
hurry完成签到,获得积分10
刚刚
圈圈黄发布了新的文献求助10
1秒前
CipherSage应助小艾采纳,获得10
1秒前
疲倦之躯发布了新的文献求助10
1秒前
1秒前
林七七发布了新的文献求助10
1秒前
1秒前
2秒前
linshunan完成签到,获得积分10
2秒前
Ava应助魔幻的斑马采纳,获得10
2秒前
啦啦完成签到,获得积分20
2秒前
2秒前
tesla发布了新的文献求助10
4秒前
上官若男应助xiaoding采纳,获得30
4秒前
余味发布了新的文献求助30
4秒前
关小乙发布了新的文献求助10
4秒前
5秒前
5秒前
Lucas应助MA采纳,获得10
5秒前
1230发布了新的文献求助10
6秒前
科研通AI5应助机灵又蓝采纳,获得10
6秒前
6秒前
李爱国应助曾泓跃采纳,获得20
7秒前
哈哈哈发布了新的文献求助10
7秒前
拉风中带点萌完成签到,获得积分10
7秒前
稳重的傲芙完成签到,获得积分20
7秒前
7秒前
kingwill应助Gilana采纳,获得20
7秒前
8秒前
linshunan发布了新的文献求助10
8秒前
8秒前
melon完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
11秒前
Jasper应助have勇气采纳,获得10
11秒前
夜骐发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553582
求助须知:如何正确求助?哪些是违规求助? 3129521
关于积分的说明 9382550
捐赠科研通 2828636
什么是DOI,文献DOI怎么找? 1555065
邀请新用户注册赠送积分活动 725800
科研通“疑难数据库(出版商)”最低求助积分说明 715212