Ectasia Risk Model: A Novel Method Without Cut-off Point Based on Artificial Intelligence Improves Detection of Higher-Risk Eyes

扩张 角膜磨镶术 计算机科学 人工智能 风险因素 医学 外科 眼科 角膜 内科学
作者
Marcony R. Santhiago,Daniella Castro Araújo,L Stival,David Smadja,Adriano Veloso
出处
期刊:Journal of Refractive Surgery [Slack Incorporated (United States)]
卷期号:38 (11): 716-724 被引量:1
标识
DOI:10.3928/1081597x-20221018-01
摘要

To develop a new ectasia risk model through artificial intelligence (AI) and machine learning, enabling the creation of an integrated method without a cut-off point per risk factor, and subsequently better at differentiating patients at higher risk of ectasia with normal topography.This comparative case-control study included 339 eyes with normal preoperative topography, with 65 eyes that developed ectasia after laser in situ keratomileusis (ectasia group) and 274 eyes that did not develop ectasia (control group). The AI model used known risk factors to engineer 14 additional ones, totaling 20 features. In this methodology, no variable is used in isolation because its cut-off point is never considered. All separation between cases and controls is made through the interaction detected by the machine learning model that gathers the variables considered relevant. The ability to correctly separate ectatic cases identified as high risk, ectatic cases wrongly classified as low risk, and controls were illustrated by the diagram t-distributed stochastic neighbor embedding (t-SNE).Only two original variables (percent tissue altered and corneal thickness) and two derived from the feature engineering process (derivative percent tissue altered and age weighted value) were selected by the final AI model (ie, best performing AI-based model to separate patients at higher risk). The t-SNE visualization demonstrated the greater ability to differentiate between patients considered at risk by the AI-based model, without a cut-off point, compared to all other methods used alone (P < .0001).This study describes a new AI-based model that integrates different risk factors without a cut-off point, increasing the number of cases correctly identified as at higher risk. [J Refract Surg. 2022;38(11):716-724.].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珂尔维特发布了新的文献求助10
2秒前
2秒前
3秒前
eeush完成签到,获得积分10
3秒前
张丹兰完成签到,获得积分10
3秒前
风清扬应助Mingda采纳,获得10
3秒前
4秒前
4秒前
4秒前
grzzz完成签到,获得积分10
5秒前
鹿立轩发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
liuziop发布了新的文献求助10
6秒前
lily发布了新的文献求助10
6秒前
lili完成签到,获得积分10
6秒前
义气的乐曲完成签到,获得积分20
6秒前
Jamesliu发布了新的文献求助10
7秒前
传奇3应助你终硕采纳,获得10
7秒前
ee发布了新的文献求助10
7秒前
Jiayi发布了新的文献求助10
8秒前
Vanessa发布了新的文献求助10
8秒前
顺心夜南发布了新的文献求助10
9秒前
自信的小ping子完成签到,获得积分10
9秒前
大模型应助to高坚果采纳,获得10
9秒前
iiing发布了新的文献求助10
9秒前
于凡完成签到,获得积分10
9秒前
汉堡包应助高高烨磊采纳,获得10
9秒前
打打应助嘉汐采纳,获得10
10秒前
嗯哼完成签到,获得积分20
11秒前
genos发布了新的文献求助10
11秒前
小坤同学完成签到,获得积分10
12秒前
Meng发布了新的文献求助10
12秒前
充电宝应助LeeWX采纳,获得10
12秒前
Mingda完成签到,获得积分10
13秒前
14秒前
珂尔维特完成签到,获得积分10
15秒前
思源应助sumu采纳,获得10
15秒前
黄菲菲关注了科研通微信公众号
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577394
求助须知:如何正确求助?哪些是违规求助? 3996655
关于积分的说明 12373185
捐赠科研通 3670647
什么是DOI,文献DOI怎么找? 2022943
邀请新用户注册赠送积分活动 1057104
科研通“疑难数据库(出版商)”最低求助积分说明 944067