Ectasia Risk Model: A Novel Method Without Cut-off Point Based on Artificial Intelligence Improves Detection of Higher-Risk Eyes

扩张 角膜磨镶术 计算机科学 人工智能 风险因素 医学 外科 眼科 角膜 内科学
作者
Marcony R. Santhiago,Daniella Castro Araújo,L Stival,David Smadja,Adriano Veloso
出处
期刊:Journal of Refractive Surgery [SLACK, Inc.]
卷期号:38 (11): 716-724 被引量:1
标识
DOI:10.3928/1081597x-20221018-01
摘要

To develop a new ectasia risk model through artificial intelligence (AI) and machine learning, enabling the creation of an integrated method without a cut-off point per risk factor, and subsequently better at differentiating patients at higher risk of ectasia with normal topography.This comparative case-control study included 339 eyes with normal preoperative topography, with 65 eyes that developed ectasia after laser in situ keratomileusis (ectasia group) and 274 eyes that did not develop ectasia (control group). The AI model used known risk factors to engineer 14 additional ones, totaling 20 features. In this methodology, no variable is used in isolation because its cut-off point is never considered. All separation between cases and controls is made through the interaction detected by the machine learning model that gathers the variables considered relevant. The ability to correctly separate ectatic cases identified as high risk, ectatic cases wrongly classified as low risk, and controls were illustrated by the diagram t-distributed stochastic neighbor embedding (t-SNE).Only two original variables (percent tissue altered and corneal thickness) and two derived from the feature engineering process (derivative percent tissue altered and age weighted value) were selected by the final AI model (ie, best performing AI-based model to separate patients at higher risk). The t-SNE visualization demonstrated the greater ability to differentiate between patients considered at risk by the AI-based model, without a cut-off point, compared to all other methods used alone (P < .0001).This study describes a new AI-based model that integrates different risk factors without a cut-off point, increasing the number of cases correctly identified as at higher risk. [J Refract Surg. 2022;38(11):716-724.].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
雪白阑悦发布了新的文献求助20
刚刚
大个应助络噬元兽采纳,获得10
刚刚
华仔应助凌墨墨采纳,获得20
1秒前
大模型应助简简简采纳,获得10
1秒前
1秒前
2秒前
jellybeans完成签到,获得积分20
2秒前
小马甲应助fkhuny采纳,获得10
3秒前
orixero应助inter采纳,获得10
3秒前
zhou完成签到,获得积分20
3秒前
科研通AI6应助adsf采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
安静的博发布了新的文献求助10
5秒前
5秒前
6秒前
1234完成签到,获得积分20
6秒前
yang1完成签到,获得积分10
7秒前
7秒前
星海发布了新的文献求助10
7秒前
浮游应助yoowt采纳,获得10
7秒前
斯文败类应助坚强的曼雁采纳,获得10
8秒前
11223发布了新的文献求助10
8秒前
无照无招发布了新的文献求助10
8秒前
别摆烂了完成签到,获得积分10
9秒前
yt发布了新的文献求助10
9秒前
桃井尤川发布了新的文献求助10
9秒前
10秒前
the完成签到,获得积分20
10秒前
10秒前
打打应助琪琪快发论文采纳,获得30
10秒前
大个应助小枣采纳,获得10
11秒前
呵呵呵呵发布了新的文献求助10
11秒前
ou完成签到,获得积分10
11秒前
要减肥的铃铛完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435534
求助须知:如何正确求助?哪些是违规求助? 4547530
关于积分的说明 14209113
捐赠科研通 4467757
什么是DOI,文献DOI怎么找? 2448727
邀请新用户注册赠送积分活动 1439617
关于科研通互助平台的介绍 1416244