亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ectasia Risk Model: A Novel Method Without Cut-off Point Based on Artificial Intelligence Improves Detection of Higher-Risk Eyes

扩张 角膜磨镶术 计算机科学 人工智能 风险因素 医学 外科 眼科 角膜 内科学
作者
Marcony R. Santhiago,Daniella Castro Araújo,L Stival,David Smadja,Adriano Veloso
出处
期刊:Journal of Refractive Surgery [SLACK, Inc.]
卷期号:38 (11): 716-724 被引量:1
标识
DOI:10.3928/1081597x-20221018-01
摘要

To develop a new ectasia risk model through artificial intelligence (AI) and machine learning, enabling the creation of an integrated method without a cut-off point per risk factor, and subsequently better at differentiating patients at higher risk of ectasia with normal topography.This comparative case-control study included 339 eyes with normal preoperative topography, with 65 eyes that developed ectasia after laser in situ keratomileusis (ectasia group) and 274 eyes that did not develop ectasia (control group). The AI model used known risk factors to engineer 14 additional ones, totaling 20 features. In this methodology, no variable is used in isolation because its cut-off point is never considered. All separation between cases and controls is made through the interaction detected by the machine learning model that gathers the variables considered relevant. The ability to correctly separate ectatic cases identified as high risk, ectatic cases wrongly classified as low risk, and controls were illustrated by the diagram t-distributed stochastic neighbor embedding (t-SNE).Only two original variables (percent tissue altered and corneal thickness) and two derived from the feature engineering process (derivative percent tissue altered and age weighted value) were selected by the final AI model (ie, best performing AI-based model to separate patients at higher risk). The t-SNE visualization demonstrated the greater ability to differentiate between patients considered at risk by the AI-based model, without a cut-off point, compared to all other methods used alone (P < .0001).This study describes a new AI-based model that integrates different risk factors without a cut-off point, increasing the number of cases correctly identified as at higher risk. [J Refract Surg. 2022;38(11):716-724.].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助体贴花卷采纳,获得10
2秒前
5秒前
12秒前
彭于晏应助饭团不吃鱼采纳,获得10
22秒前
量子星尘发布了新的文献求助10
30秒前
彭于晏应助世良采纳,获得10
31秒前
31秒前
36秒前
37秒前
GIA完成签到,获得积分10
39秒前
饭团不吃鱼完成签到,获得积分10
47秒前
ceeray23应助科研通管家采纳,获得10
54秒前
ceeray23应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
ceeray23应助科研通管家采纳,获得10
54秒前
55秒前
55秒前
炙热的雪糕完成签到,获得积分10
57秒前
gbb发布了新的文献求助10
59秒前
LXZ发布了新的文献求助10
1分钟前
willlee完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
脑洞疼应助哈皮波采纳,获得10
1分钟前
世良发布了新的文献求助10
1分钟前
1分钟前
gbb完成签到,获得积分10
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
ddddddd完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
哈皮波发布了新的文献求助10
1分钟前
暖暖完成签到,获得积分10
1分钟前
哈皮波完成签到,获得积分10
1分钟前
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
1分钟前
搜集达人应助体贴花卷采纳,获得10
1分钟前
1分钟前
科研通AI6应助xiaozhou采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399