Ectasia Risk Model: A Novel Method Without Cut-off Point Based on Artificial Intelligence Improves Detection of Higher-Risk Eyes

扩张 角膜磨镶术 计算机科学 人工智能 风险因素 医学 外科 眼科 角膜 内科学
作者
Marcony R. Santhiago,Daniella Castro Araújo,L Stival,David Smadja,Adriano Veloso
出处
期刊:Journal of Refractive Surgery [Slack Incorporated (United States)]
卷期号:38 (11): 716-724 被引量:1
标识
DOI:10.3928/1081597x-20221018-01
摘要

To develop a new ectasia risk model through artificial intelligence (AI) and machine learning, enabling the creation of an integrated method without a cut-off point per risk factor, and subsequently better at differentiating patients at higher risk of ectasia with normal topography.This comparative case-control study included 339 eyes with normal preoperative topography, with 65 eyes that developed ectasia after laser in situ keratomileusis (ectasia group) and 274 eyes that did not develop ectasia (control group). The AI model used known risk factors to engineer 14 additional ones, totaling 20 features. In this methodology, no variable is used in isolation because its cut-off point is never considered. All separation between cases and controls is made through the interaction detected by the machine learning model that gathers the variables considered relevant. The ability to correctly separate ectatic cases identified as high risk, ectatic cases wrongly classified as low risk, and controls were illustrated by the diagram t-distributed stochastic neighbor embedding (t-SNE).Only two original variables (percent tissue altered and corneal thickness) and two derived from the feature engineering process (derivative percent tissue altered and age weighted value) were selected by the final AI model (ie, best performing AI-based model to separate patients at higher risk). The t-SNE visualization demonstrated the greater ability to differentiate between patients considered at risk by the AI-based model, without a cut-off point, compared to all other methods used alone (P < .0001).This study describes a new AI-based model that integrates different risk factors without a cut-off point, increasing the number of cases correctly identified as at higher risk. [J Refract Surg. 2022;38(11):716-724.].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
浮游应助Sun采纳,获得10
1秒前
1秒前
2秒前
发论文完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
传奇3应助木火采纳,获得10
3秒前
4秒前
小白猪发布了新的文献求助10
4秒前
喝水吗完成签到,获得积分10
4秒前
小魔王发布了新的文献求助10
4秒前
Hello应助YU采纳,获得10
4秒前
亦玉发布了新的文献求助10
4秒前
专注追命发布了新的文献求助10
5秒前
6秒前
自信的发布了新的文献求助10
6秒前
666完成签到,获得积分10
6秒前
zhz发布了新的文献求助10
7秒前
三磷酸腺苷应助Genius采纳,获得10
7秒前
sa发布了新的文献求助10
8秒前
落寞怀柔完成签到,获得积分10
8秒前
9秒前
小白猪完成签到,获得积分10
9秒前
少月发布了新的文献求助10
9秒前
9秒前
9秒前
顾矜应助斯文的文轩采纳,获得10
9秒前
to高坚果发布了新的文献求助10
10秒前
陈乔乔完成签到 ,获得积分10
10秒前
Gxmmmm_应助66采纳,获得10
10秒前
Gallop发布了新的文献求助30
11秒前
11秒前
11秒前
今后应助shangkun采纳,获得10
11秒前
11秒前
结实的忆之完成签到,获得积分10
12秒前
何何耶发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913599
求助须知:如何正确求助?哪些是违规求助? 4188210
关于积分的说明 13007290
捐赠科研通 3956913
什么是DOI,文献DOI怎么找? 2169446
邀请新用户注册赠送积分活动 1187782
关于科研通互助平台的介绍 1095349