Ectasia Risk Model: A Novel Method Without Cut-off Point Based on Artificial Intelligence Improves Detection of Higher-Risk Eyes

扩张 角膜磨镶术 计算机科学 人工智能 风险因素 医学 外科 眼科 角膜 内科学
作者
Marcony R. Santhiago,Daniella Castro Araújo,L Stival,David Smadja,Adriano Veloso
出处
期刊:Journal of Refractive Surgery [SLACK, Inc.]
卷期号:38 (11): 716-724 被引量:1
标识
DOI:10.3928/1081597x-20221018-01
摘要

To develop a new ectasia risk model through artificial intelligence (AI) and machine learning, enabling the creation of an integrated method without a cut-off point per risk factor, and subsequently better at differentiating patients at higher risk of ectasia with normal topography.This comparative case-control study included 339 eyes with normal preoperative topography, with 65 eyes that developed ectasia after laser in situ keratomileusis (ectasia group) and 274 eyes that did not develop ectasia (control group). The AI model used known risk factors to engineer 14 additional ones, totaling 20 features. In this methodology, no variable is used in isolation because its cut-off point is never considered. All separation between cases and controls is made through the interaction detected by the machine learning model that gathers the variables considered relevant. The ability to correctly separate ectatic cases identified as high risk, ectatic cases wrongly classified as low risk, and controls were illustrated by the diagram t-distributed stochastic neighbor embedding (t-SNE).Only two original variables (percent tissue altered and corneal thickness) and two derived from the feature engineering process (derivative percent tissue altered and age weighted value) were selected by the final AI model (ie, best performing AI-based model to separate patients at higher risk). The t-SNE visualization demonstrated the greater ability to differentiate between patients considered at risk by the AI-based model, without a cut-off point, compared to all other methods used alone (P < .0001).This study describes a new AI-based model that integrates different risk factors without a cut-off point, increasing the number of cases correctly identified as at higher risk. [J Refract Surg. 2022;38(11):716-724.].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lysine完成签到,获得积分10
刚刚
刚刚
要减肥岩完成签到,获得积分10
1秒前
1秒前
茵似发布了新的文献求助10
1秒前
3秒前
不懈奋进应助lilili采纳,获得30
3秒前
Lysine发布了新的文献求助10
4秒前
荀煜祺完成签到,获得积分10
4秒前
叙余完成签到 ,获得积分10
4秒前
4秒前
明明发布了新的文献求助10
4秒前
严永桂发布了新的文献求助10
5秒前
鲤鱼鸽子完成签到,获得积分10
5秒前
五迟早发布了新的文献求助10
5秒前
xinghhhe完成签到,获得积分10
5秒前
等等发布了新的文献求助10
5秒前
5秒前
7秒前
吾酒完成签到,获得积分10
7秒前
Qvby3完成签到 ,获得积分10
8秒前
清爽灰狼发布了新的文献求助10
8秒前
欢呼曼荷完成签到,获得积分10
8秒前
8秒前
Nov完成签到 ,获得积分10
9秒前
突突突完成签到,获得积分10
9秒前
在水一方应助pink采纳,获得10
9秒前
9秒前
9秒前
完美世界应助鳗鱼焦采纳,获得10
9秒前
10秒前
xiaoou完成签到 ,获得积分10
10秒前
li关注了科研通微信公众号
10秒前
zky发布了新的文献求助10
11秒前
橘子石榴应助liyutong采纳,获得10
12秒前
萌新发布了新的文献求助10
12秒前
yyy完成签到,获得积分10
12秒前
12秒前
Yziii应助古德猫宁采纳,获得20
13秒前
YUN完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012