亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ectasia Risk Model: A Novel Method Without Cut-off Point Based on Artificial Intelligence Improves Detection of Higher-Risk Eyes

扩张 角膜磨镶术 计算机科学 人工智能 风险因素 医学 外科 眼科 角膜 内科学
作者
Marcony R. Santhiago,Daniella Castro Araújo,L Stival,David Smadja,Adriano Veloso
出处
期刊:Journal of Refractive Surgery [SLACK, Inc.]
卷期号:38 (11): 716-724 被引量:1
标识
DOI:10.3928/1081597x-20221018-01
摘要

To develop a new ectasia risk model through artificial intelligence (AI) and machine learning, enabling the creation of an integrated method without a cut-off point per risk factor, and subsequently better at differentiating patients at higher risk of ectasia with normal topography.This comparative case-control study included 339 eyes with normal preoperative topography, with 65 eyes that developed ectasia after laser in situ keratomileusis (ectasia group) and 274 eyes that did not develop ectasia (control group). The AI model used known risk factors to engineer 14 additional ones, totaling 20 features. In this methodology, no variable is used in isolation because its cut-off point is never considered. All separation between cases and controls is made through the interaction detected by the machine learning model that gathers the variables considered relevant. The ability to correctly separate ectatic cases identified as high risk, ectatic cases wrongly classified as low risk, and controls were illustrated by the diagram t-distributed stochastic neighbor embedding (t-SNE).Only two original variables (percent tissue altered and corneal thickness) and two derived from the feature engineering process (derivative percent tissue altered and age weighted value) were selected by the final AI model (ie, best performing AI-based model to separate patients at higher risk). The t-SNE visualization demonstrated the greater ability to differentiate between patients considered at risk by the AI-based model, without a cut-off point, compared to all other methods used alone (P < .0001).This study describes a new AI-based model that integrates different risk factors without a cut-off point, increasing the number of cases correctly identified as at higher risk. [J Refract Surg. 2022;38(11):716-724.].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天真千易发布了新的文献求助30
6秒前
27秒前
28秒前
lucky发布了新的文献求助10
42秒前
vv完成签到 ,获得积分10
51秒前
Criminology34应助科研通管家采纳,获得10
56秒前
Criminology34应助科研通管家采纳,获得20
56秒前
赘婿应助难过的踏歌采纳,获得10
1分钟前
华仔应助lucky采纳,获得10
1分钟前
1分钟前
1分钟前
hai发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
学术大佬阿呆完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
Tumumu完成签到,获得积分10
2分钟前
2分钟前
扣子完成签到,获得积分10
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
3分钟前
爆米花应助兴奋的菠萝采纳,获得10
3分钟前
兴奋的菠萝完成签到,获得积分20
3分钟前
3分钟前
4分钟前
4分钟前
风中傲柔完成签到,获得积分10
4分钟前
Ava应助aab采纳,获得10
4分钟前
认真的幻姬完成签到,获得积分10
4分钟前
科研通AI6应助霜降采纳,获得10
4分钟前
青柠完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
心静止水发布了新的文献求助10
5分钟前
5分钟前
麻花阳完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432400
求助须知:如何正确求助?哪些是违规求助? 4544989
关于积分的说明 14195030
捐赠科研通 4464383
什么是DOI,文献DOI怎么找? 2447075
邀请新用户注册赠送积分活动 1438405
关于科研通互助平台的介绍 1415253