亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal control of PDEs using physics-informed neural networks

离散化 偏微分方程 人工神经网络 伯格斯方程 最优控制 非线性系统 伴随方程 应用数学 控制变量 计算机科学 李普希茨连续性 拉普拉斯变换 数学 物理 数学优化 人工智能 数学分析 统计 量子力学
作者
Saviz Mowlavi,Saleh Nabi
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:473: 111731-111731 被引量:77
标识
DOI:10.1016/j.jcp.2022.111731
摘要

Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal is to find a control variable that minimizes a desired cost objective. We provide a set of guidelines for obtaining a good optimal control solution; first by selecting an appropriate PINN architecture and training parameters based on a forward problem, second by choosing the best value for a critical scalar weight in the loss function using a simple but effective two-step line search strategy. We then validate the performance of the PINN framework by comparing it to adjoint-based nonlinear optimal control, which performs gradient descent on the discretized control variable while satisfying the discretized PDE. This comparison is carried out on several distributed control examples based on the Laplace, Burgers, Kuramoto-Sivashinsky, and Navier-Stokes equations. Finally, we discuss the advantages and caveats of using the PINN and adjoint-based approaches for solving optimal control problems constrained by nonlinear PDEs. • PINNs are applied to PDE-constrained optimal control problems. • Guidelines for validating and evaluating the optimal control solution are discussed. • The performance of the PINN approach is compared with adjoint-based optimization. • Several examples are considered, including the Navier-Stokes equations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ruby完成签到,获得积分10
14秒前
3927456843完成签到,获得积分10
16秒前
GRATE完成签到 ,获得积分10
20秒前
宋佳珍完成签到,获得积分10
47秒前
BowieHuang应助舒心的夜白采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得30
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得30
1分钟前
舒心的夜白完成签到,获得积分10
1分钟前
2分钟前
shunli完成签到 ,获得积分10
2分钟前
2分钟前
TEMPO发布了新的文献求助10
2分钟前
李海平完成签到 ,获得积分10
2分钟前
敞敞亮亮完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
烟花应助Marshall采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Marshall发布了新的文献求助10
4分钟前
4分钟前
半城烟火完成签到 ,获得积分10
4分钟前
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
香蕉觅云应助科研通管家采纳,获得30
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714995
求助须知:如何正确求助?哪些是违规求助? 5229079
关于积分的说明 15273941
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612682
邀请新用户注册赠送积分活动 1562873
关于科研通互助平台的介绍 1520157