Optimal control of PDEs using physics-informed neural networks

人工神经网络 最优控制 应用数学 控制(管理) 计算机科学 统计物理学 数学 物理 数学优化 牙石(牙科) 人工智能 医学 牙科
作者
Saviz Mowlavi,Saleh Nabi
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:473: 111731-111731 被引量:2
标识
DOI:10.1016/j.jcp.2022.111731
摘要

Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal is to find a control variable that minimizes a desired cost objective. We provide a set of guidelines for obtaining a good optimal control solution; first by selecting an appropriate PINN architecture and training parameters based on a forward problem, second by choosing the best value for a critical scalar weight in the loss function using a simple but effective two-step line search strategy. We then validate the performance of the PINN framework by comparing it to adjoint-based nonlinear optimal control, which performs gradient descent on the discretized control variable while satisfying the discretized PDE. This comparison is carried out on several distributed control examples based on the Laplace, Burgers, Kuramoto-Sivashinsky, and Navier-Stokes equations. Finally, we discuss the advantages and caveats of using the PINN and adjoint-based approaches for solving optimal control problems constrained by nonlinear PDEs. • PINNs are applied to PDE-constrained optimal control problems. • Guidelines for validating and evaluating the optimal control solution are discussed. • The performance of the PINN approach is compared with adjoint-based optimization. • Several examples are considered, including the Navier-Stokes equations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚芭蕉发布了新的文献求助10
1秒前
任性青烟发布了新的文献求助10
2秒前
3秒前
silent发布了新的文献求助50
3秒前
JamesPei应助asdfghjkl采纳,获得10
3秒前
zho发布了新的文献求助10
4秒前
5秒前
kk完成签到,获得积分10
6秒前
WWUUUU发布了新的文献求助50
6秒前
7秒前
打打应助哈迪采纳,获得10
7秒前
咪咪虾条完成签到,获得积分10
7秒前
慕青应助左丘从安采纳,获得10
7秒前
8秒前
落榜美术生完成签到,获得积分10
8秒前
要减肥的晓曼完成签到 ,获得积分10
9秒前
卡皮巴拉完成签到,获得积分20
10秒前
淡然依凝发布了新的文献求助30
11秒前
11秒前
12秒前
小石头完成签到,获得积分10
13秒前
苏卿应助我十分讨厌你采纳,获得30
15秒前
小蜜峰儿完成签到 ,获得积分10
16秒前
Focus_BG完成签到,获得积分10
17秒前
Akim应助西子阳采纳,获得10
17秒前
mzbgnk发布了新的文献求助10
17秒前
小酸奶完成签到,获得积分10
17秒前
17秒前
18秒前
冷酷芝完成签到,获得积分10
20秒前
tianshanfeihe完成签到 ,获得积分10
20秒前
牙牙侠发布了新的文献求助10
20秒前
ba完成签到,获得积分10
20秒前
21秒前
旋转鸡爪子应助偷乐采纳,获得10
21秒前
慕青应助content采纳,获得10
22秒前
orixero应助美味的薯片采纳,获得10
22秒前
安详的嵩发布了新的文献求助10
23秒前
流光发布了新的文献求助10
23秒前
Muller完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070