Optimal control of PDEs using physics-informed neural networks

人工神经网络 最优控制 应用数学 控制(管理) 计算机科学 统计物理学 数学 物理 数学优化 牙石(牙科) 人工智能 医学 牙科
作者
Saviz Mowlavi,Saleh Nabi
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:473: 111731-111731 被引量:2
标识
DOI:10.1016/j.jcp.2022.111731
摘要

Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal is to find a control variable that minimizes a desired cost objective. We provide a set of guidelines for obtaining a good optimal control solution; first by selecting an appropriate PINN architecture and training parameters based on a forward problem, second by choosing the best value for a critical scalar weight in the loss function using a simple but effective two-step line search strategy. We then validate the performance of the PINN framework by comparing it to adjoint-based nonlinear optimal control, which performs gradient descent on the discretized control variable while satisfying the discretized PDE. This comparison is carried out on several distributed control examples based on the Laplace, Burgers, Kuramoto-Sivashinsky, and Navier-Stokes equations. Finally, we discuss the advantages and caveats of using the PINN and adjoint-based approaches for solving optimal control problems constrained by nonlinear PDEs. • PINNs are applied to PDE-constrained optimal control problems. • Guidelines for validating and evaluating the optimal control solution are discussed. • The performance of the PINN approach is compared with adjoint-based optimization. • Several examples are considered, including the Navier-Stokes equations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助喜宝采纳,获得10
刚刚
酷波er应助姜半兰采纳,获得10
刚刚
阳光的霸完成签到,获得积分10
1秒前
Danielle完成签到,获得积分10
1秒前
2秒前
上官若男应助健壮绿蝶采纳,获得10
2秒前
yang应助柯仇天采纳,获得10
2秒前
xiaofeiyan发布了新的文献求助20
3秒前
儒雅的猪八蛋完成签到,获得积分10
3秒前
4秒前
XF发布了新的文献求助10
4秒前
5秒前
月昔完成签到,获得积分10
5秒前
夕赣发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助虚心的访烟采纳,获得10
7秒前
Lucas应助psychosocial采纳,获得10
8秒前
姜半兰完成签到,获得积分10
9秒前
英姑应助QY11采纳,获得10
9秒前
可靠夏彤发布了新的文献求助10
9秒前
FashionBoy应助bbj采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
JamesPei应助听话的晓夏采纳,获得10
13秒前
哈哈哈哈完成签到 ,获得积分10
13秒前
14秒前
Harb发布了新的文献求助10
15秒前
Vivi应助XF采纳,获得10
16秒前
Yina完成签到 ,获得积分10
16秒前
喜宝发布了新的文献求助10
16秒前
16秒前
今后应助优雅的纸鹤采纳,获得10
17秒前
跳跃毒娘发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
drew发布了新的文献求助30
20秒前
bbj完成签到,获得积分10
20秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071582
求助须知:如何正确求助?哪些是违规求助? 2725545
关于积分的说明 7490070
捐赠科研通 2372784
什么是DOI,文献DOI怎么找? 1258244
科研通“疑难数据库(出版商)”最低求助积分说明 610260
版权声明 596916