作者
Zhengning Xu,Qiaoli Zou,Lingling Jin,Yemin Shen,Jiasi Shen,Bingye Xu,Fangqi Qu,Fei Zhang,Jiawei Xu,Xiangyu Pei,Guangzhao Xie,Binyu Kuang,Xin Huang,Xudong Tian,Zhibin Wang
摘要
Continuous measurement of 98 volatile organic compounds (VOCs) was conducted during 2017–2019 at a regional background site (Shanxi) located at northeast of Zhejiang Province, YRD region, China. The average concentration of total VOCs (TVOCs) was 25.4 ± 18.4 ppbv, and an increasing trend (+12.2 %) was observed. Alkanes were the most abundant VOC group among all seasons, accounting for 43.5 % of TVOCs. Oxygenated VOCs (OVOCs), aromatics, halides and alkenes contributed 15.9 %, 15.7 %, 11.7 % and 10.3 % of TVOCs concentration, respectively. Biogenic VOCs (BVOCs) and OVOCs showed distinguished diurnal cycle from primary anthropogenic VOCs. Photochemical reactivity analysis based on ozone formation potential (OFP) and OH loss rate (LOH) indicated that aromatics and alkenes were the most significant contributor, respectively. Toluene, xylene (m/p- and o-), ethene and propene were the largest contributor of annual OFP, with the mean OFP being 33.8 ± 44.3 μg·m−3, 31.9 ± 32.1 μg·m−3, 9.29 ± 11.4 μg·m−3, 22.1 ± 21.3 μg·m−3 and 12.8 ± 19.5 μg·m−3, respectively. Seven sources were identified with positive matrix factorization (PMF): petrochemical industry (13.8 %), biogenic emission (1.0 %), solvent usage-toluene (16.9 %), vehicular exhaust (43.8 %), Integrated circuits industry (3.8 %), solvent usage-C8 aromatics (10.9 %), and gasoline evaporation (9.8 %). Vehicular exhaust was the most significant source (43.8 %) during the whole measurement period. Solvent usage, petrochemical industry, and gasoline evaporation showed high temperature dependency. The integrated contribution of solvent usage and industrial processes were higher than vehicular exhaust during hot months. These sources also have higher chemical reactivities and can contribute more on O3 formation. Our results are helpful on determining the control strategies aiming at alleviating O3 pollution.