已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient, accurate and fast pupil segmentation for pupillary boundary in iris recognition

IRIS(生物传感器) 虹膜识别 小学生 分割 人工智能 计算机科学 计算机视觉 边界(拓扑) 像素 数学 生物识别 光学 物理 数学分析
作者
Shahrizan Jamaludin,Ahmad Faisal Mohamad Ayob,Mohd Faizal Ali Akhbar,Ahmad Ali Imran Mohd Ali,Md Mahadi Hasan Imran,Syamimi Mohd Norzeli,Saiful Bahri Mohamed
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:175: 103352-103352 被引量:8
标识
DOI:10.1016/j.advengsoft.2022.103352
摘要

Iris recognition is a robust biometric system—user-friendly, accurate, fast, and reliable. This biometric system captures information in a contactless manner, making it suitable for use during the COVID-19 pandemic. Despite its advantages such as high security and high accuracy, iris recognition still suffers from pupil deformation, motion blur, eyelids blocking, reflection occlusion and eyelashes obscure. If the pupillary boundary is not accurately segmented, iris recognition may suffer tremendously. Moreover, reflections in iris image may lead to an incorrect pupillary boundary segmentation. The segmentation accuracy can also be affected and reduced because of the presence of an unwanted noise created by the motion blur effect in iris image. Additionally, the pupillary boundary might change from circular shape to uneven or irregular shape because of the interference and obstruction in pupil region. Therefore, this work is carried out to determine an accurate, efficient and fast algorithm for the segmentation of pupillary boundary. First, the iris image is pre-processed with Wiener filter. Next, the respective iris image is assigned with a specific threshold. After that, the pixel property in iris image is computed to determine the pupillary boundary coordinates which are acquired from the measured pixel list and area in iris image. Finally, morphological closing is used to remove reflections in the inner region of pupil boundary. All experiments are implemented with CASIA v4 database and Matlab R2020a.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助光亮的笑槐采纳,获得30
刚刚
灵山剑侠发布了新的文献求助10
2秒前
万能图书馆应助Gary采纳,获得30
3秒前
glj完成签到,获得积分10
4秒前
独孤阳光完成签到,获得积分10
5秒前
6秒前
9秒前
柠檬柚子晴完成签到,获得积分10
12秒前
14秒前
14秒前
18秒前
21秒前
何平发布了新的文献求助10
23秒前
23秒前
24秒前
桃子完成签到,获得积分10
24秒前
24秒前
25秒前
17应助Maruko_0_采纳,获得10
25秒前
25秒前
领导范儿应助幽默的溪灵采纳,获得200
26秒前
27秒前
香蕉擎完成签到 ,获得积分10
27秒前
28秒前
31秒前
31秒前
大模型应助科研力力采纳,获得10
31秒前
32秒前
jim完成签到,获得积分10
33秒前
Gary发布了新的文献求助30
33秒前
34秒前
34秒前
Mm发布了新的文献求助10
36秒前
XYT发布了新的文献求助10
36秒前
36秒前
可耐的小小猫完成签到,获得积分20
37秒前
原野小年发布了新的文献求助10
37秒前
38秒前
星辰大海应助gggghhhh采纳,获得10
39秒前
Br_xiaobai发布了新的文献求助30
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801528
关于积分的说明 7845329
捐赠科研通 2459096
什么是DOI,文献DOI怎么找? 1308989
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727