Efficient, accurate and fast pupil segmentation for pupillary boundary in iris recognition

IRIS(生物传感器) 虹膜识别 小学生 分割 人工智能 计算机科学 计算机视觉 边界(拓扑) 像素 数学 生物识别 光学 物理 数学分析
作者
Shahrizan Jamaludin,Ahmad Faisal Mohamad Ayob,Mohd Faizal Ali Akhbar,Ahmad Ali Imran Mohd Ali,Md Mahadi Hasan Imran,Syamimi Mohd Norzeli,Saiful Bahri Mohamed
出处
期刊:Advances in Engineering Software [Elsevier]
卷期号:175: 103352-103352 被引量:8
标识
DOI:10.1016/j.advengsoft.2022.103352
摘要

Iris recognition is a robust biometric system—user-friendly, accurate, fast, and reliable. This biometric system captures information in a contactless manner, making it suitable for use during the COVID-19 pandemic. Despite its advantages such as high security and high accuracy, iris recognition still suffers from pupil deformation, motion blur, eyelids blocking, reflection occlusion and eyelashes obscure. If the pupillary boundary is not accurately segmented, iris recognition may suffer tremendously. Moreover, reflections in iris image may lead to an incorrect pupillary boundary segmentation. The segmentation accuracy can also be affected and reduced because of the presence of an unwanted noise created by the motion blur effect in iris image. Additionally, the pupillary boundary might change from circular shape to uneven or irregular shape because of the interference and obstruction in pupil region. Therefore, this work is carried out to determine an accurate, efficient and fast algorithm for the segmentation of pupillary boundary. First, the iris image is pre-processed with Wiener filter. Next, the respective iris image is assigned with a specific threshold. After that, the pixel property in iris image is computed to determine the pupillary boundary coordinates which are acquired from the measured pixel list and area in iris image. Finally, morphological closing is used to remove reflections in the inner region of pupil boundary. All experiments are implemented with CASIA v4 database and Matlab R2020a.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Wang采纳,获得10
2秒前
JamesPei应助自信尔竹采纳,获得10
3秒前
QDU发布了新的文献求助10
3秒前
Hilda007发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
科目三应助大意的小馒头采纳,获得10
5秒前
5秒前
TIGun完成签到,获得积分10
5秒前
Daniel发布了新的文献求助10
5秒前
6秒前
珀拉瑞丝应助开心的绮玉采纳,获得10
6秒前
英俊的铭应助笑点低紊采纳,获得10
6秒前
山水之乐发布了新的文献求助20
6秒前
7秒前
李健应助dudu采纳,获得10
7秒前
顾矜应助饭团不吃鱼采纳,获得10
8秒前
皆非完成签到,获得积分10
9秒前
合适孤兰发布了新的文献求助10
10秒前
10秒前
11秒前
zhBian发布了新的文献求助10
12秒前
13秒前
FashionBoy应助王碱采纳,获得10
14秒前
JamesPei应助惠惠采纳,获得10
15秒前
细心的冷雪完成签到,获得积分10
15秒前
小马儿完成签到,获得积分10
16秒前
zhBian完成签到,获得积分10
16秒前
不知终日梦为鱼完成签到,获得积分10
16秒前
胡民伟发布了新的文献求助10
16秒前
安小安发布了新的文献求助20
16秒前
如意猕猴桃完成签到 ,获得积分10
17秒前
17秒前
agrlook完成签到,获得积分10
18秒前
19秒前
Dnil完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541