Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking

聚合物囊泡 脂质体 小泡 人工细胞 细胞器 脂质双层 纳米反应器 生物物理学 纳米载体 纳米技术 化学 材料科学 药物输送 两亲性 纳米颗粒 聚合物 共聚物 生物化学 生物 有机化学
作者
Xiaorui Wang,Jinming Hu,Shiyong Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (23): 3404-3416 被引量:20
标识
DOI:10.1021/acs.accounts.2c00442
摘要

In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夏发布了新的文献求助10
1秒前
刘佳婷发布了新的文献求助10
2秒前
泥花发布了新的文献求助10
2秒前
3秒前
领导范儿应助椰椰采纳,获得10
3秒前
3秒前
Owen发布了新的文献求助10
3秒前
哈哈哈哈完成签到 ,获得积分10
3秒前
shwqishui完成签到,获得积分10
4秒前
HEI完成签到,获得积分10
5秒前
1434683426完成签到 ,获得积分10
5秒前
冷艳哈密瓜完成签到 ,获得积分10
5秒前
华仔应助Flex采纳,获得50
7秒前
FashionBoy应助夏夏采纳,获得10
7秒前
丘比特应助陈皮话梅糖采纳,获得10
8秒前
彭于晏应助dominate采纳,获得10
8秒前
请叫我风吹麦浪应助pxptmac采纳,获得10
10秒前
zxl关闭了zxl文献求助
10秒前
爱笑盼曼发布了新的文献求助10
12秒前
HEI发布了新的文献求助10
13秒前
13秒前
韩凡发布了新的文献求助10
13秒前
14秒前
16秒前
Silver发布了新的文献求助10
17秒前
无辜紫菜发布了新的文献求助10
18秒前
莎莎发布了新的文献求助10
18秒前
dyyy发布了新的文献求助10
18秒前
19秒前
19秒前
dscsdv完成签到,获得积分20
20秒前
21秒前
hmy发布了新的文献求助10
23秒前
24秒前
24秒前
dscsdv发布了新的文献求助10
24秒前
Flex发布了新的文献求助50
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
24秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490