亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking

聚合物囊泡 脂质体 小泡 人工细胞 细胞器 脂质双层 纳米反应器 生物物理学 纳米载体 纳米技术 化学 材料科学 药物输送 两亲性 纳米颗粒 聚合物 共聚物 生物化学 生物 有机化学
作者
Xiaorui Wang,Jinming Hu,Shiyong Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (23): 3404-3416 被引量:28
标识
DOI:10.1021/acs.accounts.2c00442
摘要

In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
39秒前
郭泓嵩完成签到,获得积分10
1分钟前
SDNUDRUG完成签到,获得积分10
1分钟前
1分钟前
妩媚的白玉完成签到,获得积分10
2分钟前
打打应助妩媚的白玉采纳,获得10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
lisaltp完成签到,获得积分10
3分钟前
天天开心完成签到,获得积分20
3分钟前
3分钟前
Ava应助天天开心采纳,获得10
3分钟前
3分钟前
Gryff完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
科研通AI2S应助wop111采纳,获得20
4分钟前
ZZ发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
顾矜应助xbb0905采纳,获得10
5分钟前
zmx完成签到 ,获得积分10
5分钟前
情怀应助天天啃文献采纳,获得10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
里昂义务完成签到,获得积分10
9分钟前
英姑应助里昂义务采纳,获得10
9分钟前
9分钟前
球球发布了新的文献求助10
9分钟前
10分钟前
囧神发布了新的文献求助10
10分钟前
10分钟前
里昂义务发布了新的文献求助10
10分钟前
姚老表完成签到,获得积分10
11分钟前
L_MD完成签到,获得积分10
11分钟前
研友_n2rRqn完成签到 ,获得积分10
11分钟前
11分钟前
wop111发布了新的文献求助20
11分钟前
Benhnhk21完成签到,获得积分10
12分钟前
科研通AI5应助杨惠子采纳,获得10
12分钟前
13分钟前
wop111发布了新的文献求助20
13分钟前
杨惠子发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
RF and Microwave Power Amplifiers 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5019862
求助须知:如何正确求助?哪些是违规求助? 4258564
关于积分的说明 13271307
捐赠科研通 4063734
什么是DOI,文献DOI怎么找? 2222701
邀请新用户注册赠送积分活动 1231759
关于科研通互助平台的介绍 1155094