Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking

聚合物囊泡 脂质体 小泡 人工细胞 细胞器 脂质双层 纳米反应器 生物物理学 纳米载体 纳米技术 化学 材料科学 药物输送 两亲性 纳米颗粒 聚合物 共聚物 生物化学 生物 有机化学
作者
Xiaorui Wang,Jinming Hu,Shiyong Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (23): 3404-3416 被引量:20
标识
DOI:10.1021/acs.accounts.2c00442
摘要

In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhh发布了新的文献求助10
1秒前
1秒前
飞哥yyds发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
甄的艾你完成签到,获得积分10
4秒前
上杉绘梨衣完成签到,获得积分10
4秒前
杨开心关注了科研通微信公众号
4秒前
Ava应助ool采纳,获得10
5秒前
5秒前
64646466完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
why发布了新的文献求助10
6秒前
柚子茶完成签到 ,获得积分10
7秒前
tree完成签到,获得积分10
7秒前
祝香之完成签到,获得积分10
8秒前
Akim应助Amosummer采纳,获得10
8秒前
葛顺完成签到,获得积分10
8秒前
8秒前
8秒前
BOSS徐发布了新的文献求助10
8秒前
coollz发布了新的文献求助10
9秒前
聪慧大有完成签到,获得积分10
9秒前
morris发布了新的文献求助30
9秒前
Gleaming发布了新的文献求助10
10秒前
yqwang发布了新的文献求助10
11秒前
国慕山完成签到,获得积分10
11秒前
ludy完成签到 ,获得积分10
11秒前
研友_ZGR0jn完成签到,获得积分10
13秒前
霸气凝云完成签到 ,获得积分10
13秒前
英俊的铭应助paojiao不辣采纳,获得10
13秒前
13秒前
沙沙完成签到 ,获得积分10
13秒前
14秒前
小二郎应助璀璨c采纳,获得10
14秒前
飞哥yyds完成签到,获得积分10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3069006
求助须知:如何正确求助?哪些是违规求助? 2722831
关于积分的说明 7479538
捐赠科研通 2369753
什么是DOI,文献DOI怎么找? 1256697
科研通“疑难数据库(出版商)”最低求助积分说明 609645
版权声明 596839