Deep residual network enabled smart hyperspectral image analysis and its application to monitoring moisture, size distribution and contents of four bioactive compounds of granules in the fluid-bed granulation process of Guanxinning tablets

造粒 高光谱成像 颗粒(地质) 材料科学 含水量 残余物 色谱法 数学 化学 计算机科学 人工智能 复合材料 算法 地质学 岩土工程
作者
Yi Tao,Jiaqi Bao,Qing Liu,Li Liu,Jieqiang Zhu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:287: 122083-122083 被引量:9
标识
DOI:10.1016/j.saa.2022.122083
摘要

Bed collapse is a serious problem in a fluid-bed granulation process of traditional Chinese medicine. Moisture content and size distribution are regarded as two pivotal influencing factors. Herein, a smart hyperspectral image analysis methodology was established via deep residual network (ResNet) algorithm, which was then applied to monitoring moisture content, size distribution and contents of four bioactive compounds of granules in the fluid-bed granulation process of Guanxinning tablets. First, a hyperspectral imaging camera was utilized to acquire hyperspectral images of 132 real granule samples in the spectral region of 389-1020 nm. Second, the moisture content and size distribution of the granules were measured with a laser particle sizer and a fast moisture analyzer, respectively. Moreover, the contents of danshensu, ferulic acid, rosmarinic acid and salvianolic acid B of the granules were determined by using high-performance liquid chromatography-diode array detection. Third, ResNet quantitative calibration models were built, which consisted of convolutional layer, maxpooling layer, four convolutional blocks with residual learning function and two fully connected layers. As a result, the Rc2 values for the moisture content, granule sizes and contents of four bioactive compounds are determined to be 0.957, 0.986, 0.936, 0.959, 0.937, 0.938, 0.956, 0.889, 0.914 and 0.928, whereas the Rp2 values are calculated as 0.940, 0.969, 0.904, 0.930, 0.925, 0.928, 0.896, 0.849, 0.844, and 0.905, respectively. The predicted values matched well with the measured values. These findings indicated that ResNet algorithm driven hyperspectral image analysis is feasible for monitoring both the physical and chemical properties of Guanxinning tablets at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
azusa完成签到,获得积分10
刚刚
自由饼干完成签到,获得积分10
1秒前
MOON完成签到,获得积分10
1秒前
1秒前
峰回路转完成签到,获得积分10
2秒前
冬凌草应助科研通管家采纳,获得20
3秒前
DijiaXu应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
77应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
香蕉觅云应助慢羊羊采纳,获得10
4秒前
4秒前
4秒前
oh应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
乐一李完成签到,获得积分10
5秒前
星辰完成签到,获得积分10
6秒前
6秒前
siyan156完成签到,获得积分10
7秒前
yolanda发布了新的文献求助10
7秒前
keyan完成签到,获得积分10
7秒前
嗯嗯嗯嗯发布了新的文献求助10
8秒前
mawenyu完成签到,获得积分10
9秒前
花痴的电灯泡完成签到,获得积分10
9秒前
10秒前
GT完成签到,获得积分10
10秒前
李世民完成签到,获得积分10
11秒前
liz完成签到,获得积分10
11秒前
en完成签到,获得积分10
12秒前
kiska完成签到,获得积分10
12秒前
橙子完成签到,获得积分10
13秒前
正直的语蝶完成签到,获得积分10
13秒前
iPhone7跑GWAS完成签到,获得积分10
14秒前
领导范儿应助xxx采纳,获得10
14秒前
15秒前
如意的代真完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027