Reaction Mechanism and Selectivity Tuning of Propene Oxidation at the Electrochemical Interface

丙烯 化学 电化学 催化作用 脱氢 反应机理 无机化学 氧气 化学工程 光化学 物理化学 有机化学 电极 工程类
作者
Xiaochen Liu,Tao Wang,Zhiming Zhang,Cong‐Hua Yang,Lai-Yang Li,Shimiao Wu,Shunji Xie,Gang Fu,Zhi‐You Zhou,Shi‐Gang Sun
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (45): 20895-20902 被引量:30
标识
DOI:10.1021/jacs.2c09105
摘要

Electrochemical conversion of propene is a promising technique for manufacturing commodity chemicals by using renewable electricity. To achieve this goal, we still need to develop high-performance electrocatalysts for propene electrooxidation, which highly relies on understanding the reaction mechanism at the molecular level. Although the propene oxidation mechanism has been well investigated at the solid/gas interface under thermocatalytic conditions, it still remains elusive at the solid/liquid interface under an electrochemical environment. Here, we report the mechanistic studies of propene electrooxidation on PdO/C and Pd/C catalysts, considering that the Pd-based catalyst is one of the most promising electrocatalytic systems. By electrochemical in situ attenuated total reflection Fourier transform infrared spectroscopy, a distinct reaction pathway was observed compared with conventional thermocatalysis, emphasizing that propene can be dehydrogenated at a potential higher than 0.80 V, and strongly adsorb via μ-C═CHCH3 and μ3-η2-C═CHCH3 configuration on PdO and Pd, respectively. The μ-C═CHCH3 is via bridge bonds on adjacent Pd and O atoms on PdO, and it can be further oxidized by directly taking surface oxygen from PdO, verified by the H218O isotope-edited experiment. A high surface oxygen content on PdO/C results in a 3 times higher turnover frequency than that on Pd/C for converting propene into propene glycol. This finding highlights the different reaction pathways under an electrochemical environment, which sheds light on designing next-generation electrocatalysts for propene electrooxidation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助Jello采纳,获得10
1秒前
1秒前
2秒前
2秒前
gqb完成签到,获得积分10
4秒前
ZY发布了新的文献求助10
4秒前
谭文完成签到 ,获得积分10
4秒前
5秒前
情怀应助Nito采纳,获得10
5秒前
5秒前
唐瑾瑜完成签到,获得积分10
6秒前
dw平如淡菊完成签到,获得积分10
7秒前
7秒前
SMG完成签到 ,获得积分10
7秒前
dd发布了新的文献求助10
7秒前
zmk完成签到,获得积分10
8秒前
母广明完成签到,获得积分10
10秒前
zmk发布了新的文献求助10
11秒前
13秒前
L_etoile完成签到,获得积分20
14秒前
14秒前
文献阅读者完成签到,获得积分10
15秒前
田田完成签到,获得积分10
16秒前
17秒前
dodox应助小杨采纳,获得50
17秒前
丰知然应助开心采纳,获得10
17秒前
枫丹白露完成签到,获得积分10
22秒前
天天快乐应助魔王采纳,获得10
22秒前
23秒前
23秒前
x1完成签到,获得积分10
24秒前
落后的楼房完成签到 ,获得积分10
24秒前
MoriZhang完成签到,获得积分10
24秒前
大个应助PhD_HanWu采纳,获得10
24秒前
脑洞疼应助水上书采纳,获得10
26秒前
十一月的阴天完成签到 ,获得积分10
26秒前
光亮毛豆完成签到,获得积分20
26秒前
糖糖完成签到 ,获得积分10
27秒前
开心完成签到,获得积分10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 2000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288984
求助须知:如何正确求助?哪些是违规求助? 2926181
关于积分的说明 8425836
捐赠科研通 2597260
什么是DOI,文献DOI怎么找? 1417165
科研通“疑难数据库(出版商)”最低求助积分说明 659592
邀请新用户注册赠送积分活动 642019