Machine Learning and High Throughput Synthesis Acceleration of the Discovery of Alkaline Electrolyte Oxygen Evolution Reaction Electrocatalysts

析氧 过电位 电催化剂 催化作用 电化学能量转换 电解水 材料科学 电解质 电解 电化学 纳米技术 化学工程 化学 电极 工程类 生物化学 物理化学
作者
Ahmed Sabry Farghaly,Magali Ferrandon,Daniel Schwalbe‐Koda,James Damewood,Jessica Karaguesian,Rafael Gómez‐Bombarelli,Deborah J. Myers
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (44): 1673-1673 被引量:1
标识
DOI:10.1149/ma2022-02441673mtgabs
摘要

Accelerating the development and discovery of new catalysts is vital for advancing many electrochemical energy conversion technologies (EECT) required to achieve a sustainable future utilizing carbon-free fuel, a circular economy, and to meet the grand energy challenges of the 21 st century. The oxygen evolution reaction (OER) is at the heart of many EECT such as water and carbon dioxide electrolyzers, fuel cells, and metal-oxygen batteries. The sluggish kinetics of oxygen electrocatalysis, resulting high overpotential necessary to attain practical current densities, and the high cost of the state-of-the-art OER platinum group metal (PGM) and precious metals catalysts (i.e., IrO 2 and RuO 2 ) limit the cost-effective implementation and development of several promising electrolysis technologies. 1-3 The development of alternative PGM-free OER catalysts, with comparable or superior activity and durability to the PGM catalysts and derived from earth-abundant materials has thus been an active research area for decades. The application of perovskite oxides as PGM-free electrocatalysts for the OER in alkaline environments has seen significant research interest in the last decade, with tri-metallic and tetra-metallic compounds showing activities comparable to PGM-based catalysts. 4,5 The chemical space of these compounds is exceptionally large, yet the development of new perovskite oxides with high OER performance (activity and durability) has been limited and often discovered through trial and error, a time and cost inefficient route that restricted the discovery of more advanced materials. Recent advances in high-performance computing, machine learning (ML), and high throughput material synthesis and screening technologies have enabled high-throughput catalyst design and discovery. 4-10 This presentation will describe how the machine learning and high throughput synthesis technologies worked synergistically to accelerate the discovery of alkaline oxygen evolution reaction electrocatalysts. The role of ML in accelerating the materials synthesis and the role of high throughput synthesis in optimizing the ML model predictions will be discussed. Acknowledgments This work was supported by the U.S. Department of Energy, Advanced Research Projects Agency-Energy (ARPA-E) under the DIFFERENTIATE program. This work was authored in part by Argonne National Laboratory, a U.S. Department of Energy (DOE) Office of Science laboratory operated for DOE by UChicago Argonne, LLC under contract no. DE-AC02-06CH11357. References Katsounaros, Ioannis, Serhiy Cherevko, Aleksandar R. Zeradjanin, and Karl JJ Mayrhofer. "Oxygen electrochemistry as a cornerstone for sustainable energy conversion." Angewandte Chemie International Edition 53, no. 1 (2014): 102-121. Lee, Youngmin, Jin Suntivich, Kevin J. May, Erin E. Perry, and Yang Shao-Horn. "Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions." The journal of physical chemistry letters 3, no. 3 (2012): 399-404. Cherevko, S. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Today 262 , 170–180 (2016). Nahar, Lamia, Ahmed A. Farghaly, Richard J. Alan Esteves, and Indika U. Arachchige. "Shape controlled synthesis of Au/Ag/Pd nanoalloys and their oxidation-induced self-assembly into electrocatalytically active aerogel monoliths." Chemistry of Materials 29, no. 18 (2017): 7704-7715. Farghaly, Ahmed A., Rezaul K. Khan, and Maryanne M. Collinson. "Biofouling-resistant platinum bimetallic alloys." ACS applied materials & interfaces 10, no. 25 (2018): 21103-21112. Khan, Rezaul K., Ahmed A. Farghaly, Tiago A. Silva, Dexian Ye, and Maryanne M. Collinson. "Gold-Nanoparticle-Decorated Titanium Nitride Electrodes Prepared by Glancing-Angle Deposition for Sensing Applications." ACS Applied Nano Materials 2, no. 3 (2019): 1562-1569. Farghaly, Ahmed A., Mai Lam, Christopher J. Freeman, Badharinadh Uppalapati, and Maryanne M. Collinson. "Potentiometric measurements in biofouling solutions: comparison of nanoporous gold to planar gold." Journal of The Electrochemical Society 163, no. 4 (2015): H3083. Suntivich, Jin, Kevin J. May, Hubert A. Gasteiger, John B. Goodenough, and Yang Shao-Horn. "A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles." Science 334, no. 6061 (2011): 1383-1385. Hwang, Jonathan, Zhenxing Feng, Nenian Charles, Xiao Renshaw Wang, Dongkyu Lee, Kelsey A. Stoerzinger, Sokseiha Muy et al. "Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro) catalysis and ferroelectricity." Materials Today 31 (2019): 100-118. Gómez-Bombarelli, Rafael, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. "Automatic chemical design using a data-driven continuous representation of molecules." ACS central science 4, no. 2 (2018): 268-276.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坤坤完成签到 ,获得积分10
7秒前
9秒前
罗添龙发布了新的文献求助10
12秒前
16秒前
培培完成签到 ,获得积分10
20秒前
易止完成签到 ,获得积分10
29秒前
赘婿应助科研通管家采纳,获得10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
35秒前
爆米花应助科研通管家采纳,获得50
35秒前
35秒前
晟sheng完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
jerry完成签到 ,获得积分10
38秒前
缓慢的灵枫完成签到 ,获得积分10
42秒前
逢场作戱__完成签到 ,获得积分10
45秒前
不再挨训完成签到 ,获得积分10
52秒前
猪猪hero发布了新的文献求助10
53秒前
如履平川完成签到 ,获得积分10
53秒前
二则完成签到 ,获得积分10
53秒前
可靠的大侠完成签到 ,获得积分10
54秒前
南浔完成签到 ,获得积分10
56秒前
59秒前
Wei完成签到 ,获得积分10
1分钟前
小林神完成签到,获得积分10
1分钟前
丫丫完成签到 ,获得积分10
1分钟前
胖虎完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Servant2023完成签到,获得积分10
1分钟前
自觉石头完成签到 ,获得积分10
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
乐观鸣凤完成签到,获得积分10
1分钟前
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
CyberHamster完成签到,获得积分10
1分钟前
舒适的藏花完成签到 ,获得积分10
1分钟前
学海行舟完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
tangyangzju完成签到,获得积分10
1分钟前
make217完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008711
求助须知:如何正确求助?哪些是违规求助? 3548365
关于积分的说明 11298818
捐赠科研通 3283040
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218