角质酶
聚对苯二甲酸乙二醇酯
热稳定性
化学
生物降解
聚酯纤维
酶
可重用性
色谱法
有机化学
材料科学
计算机科学
复合材料
程序设计语言
软件
作者
Hang Yuan,Guanzhang Liu,Lei Chen,Zhiwei Yi,Wenhui Jin,Guangya Zhang
标识
DOI:10.1016/j.ijbiomac.2022.11.126
摘要
Enzymatic degradation of polyethylene terephthalate (PET) suffered from challenges such as complex and costly enzyme preparation, difficult access to PET substrates, poor reusability of free enzymes and sometimes MHET inhibitions. Herein, we propose an "all-in-one" strategy to address these issues with a well-designed elastin-like polypeptides (ELPs) tag. The preparation of the ELPs-tagged cutinase (ET-C) was efficient and easy to scale up by centrifugation, with an activity recovery of 57.55 % and a yield of 160 mg/L. Besides, the activity of the ET-C was 1.3 and 1.66-fold higher in degrading PET micro- and macro-plastics compared to wild-type cutinase. The self-immobilized cutinase (ET-C@SiO2) obtained by the ELPs-mediated biosilicification exhibited high loading capacity, activity, and thermostability and maintained 77.65 % of the original activity after 10 reuses. Interestingly, the product of the ET-C was TPA, whereas the wild-type was TPA and MHET. This is a simple way to release the intermediates inhibition compared with the existing methods. Our results demonstrated the feasibility of the versatile ELPs tag, which will pave an alternative economic way for scalable PET biodegradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI