Hagen-Poiseuille方程
物理
机械
剪切流
剪切速率
粒子(生态学)
经典力学
流量(数学)
热力学
流变学
海洋学
地质学
作者
Rodrigo B. Rebouças,Alexander Z. Zinchenko,Michael Loewenberg
摘要
An exact pairwise hydrodynamic theory is developed for the flow-induced spatial distribution of particles in dilute polydisperse suspensions undergoing two-dimensional unidirectional flows, including shear and planar Poiseuille flows. Coupled diffusive fluxes and a drift velocity are extracted from a Boltzmann-like master equation. A boundary layer is predicted in regions where the shear rate vanishes with thickness set by the radii of the upstream collision cross-sections for pair interactions. An analysis of this region yields linearly vanishing drift velocities and non-vanishing diffusivities where the shear rate vanishes, thus circumventing the source of the singular particle distribution predicted by the usual models. Outside of the boundary layer, a power-law particle distribution is predicted with exponent equal to minus half the exponent of the local shear rate. Trajectories for particles with symmetry-breaking contact interactions (e.g. rough particles, permeable particles, emulsion drops) are analytically integrated to yield particle displacements given by quadratures of hard-sphere (or spherical drop) mobility functions. Using this analysis, stationary particle distributions are obtained for suspensions in Poiseuille flow. The scale for the particle distribution in monodisperse suspensions is set by the collision cross-section of the particles but its shape is almost universal. Results for polydisperse suspensions show size segregation in the central boundary layer with enrichment of smaller particles. Particle densities at the centreline scale approximately with the inverse square root of particle size. A superposition approximation reliably predicts the exact results over a broad range of parameters. The predictions agree with experiments in suspensions up to approximately 20 % volume fraction without fitting parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI