Integrating digital pathology with transcriptomic and epigenomic tools for predicting metastatic uterine tumor aggressiveness

表观遗传学 肿瘤微环境 生物 转录组 转移 表观遗传学 病理 网状纤维 免疫系统 癌症研究 癌症 医学 DNA甲基化 免疫学 基因表达 生物化学 基因 遗传学
作者
Giorgia Sonzini,Sofia Granados-Aparici,Sabina Sanegre,Angel Diaz-Lagares,Juan Diaz-Martin,Carlos de Andrea,Núria Eritja,Aida Bao-Caamano,Nicolás Costa-Fraga,David García-Ros,Carmen Salguero-Aranda,Ben Davidson,Rafael López-López,Ignacio Melero,Samuel Navarro,Santiago Ramon y Cajal,Enrique de Alava,Xavier Matias-Guiu,Rosa Noguera
出处
期刊:Frontiers in Cell and Developmental Biology [Frontiers Media SA]
卷期号:10
标识
DOI:10.3389/fcell.2022.1052098
摘要

The incidence of new cancer cases is expected to increase significantly in the future, posing a worldwide problem. In this regard, precision oncology and its diagnostic tools are essential for developing personalized cancer treatments. Digital pathology (DP) is a particularly key strategy to study the interactions of tumor cells and the tumor microenvironment (TME), which play a crucial role in tumor initiation, progression and metastasis. The purpose of this study was to integrate data on the digital patterns of reticulin fiber scaffolding and the immune cell infiltrate, transcriptomic and epigenetic profiles in aggressive uterine adenocarcinoma (uADC), uterine leiomyosarcoma (uLMS) and their respective lung metastases, with the aim of obtaining key TME biomarkers that can help improve metastatic prediction and shed light on potential therapeutic targets. Automatized algorithms were used to analyze reticulin fiber architecture and immune infiltration in colocalized regions of interest (ROIs) of 133 invasive tumor front (ITF), 89 tumor niches and 70 target tissues in a total of six paired samples of uADC and nine of uLMS. Microdissected tissue from the ITF was employed for transcriptomic and epigenetic studies in primary and metastatic tumors. Reticulin fiber scaffolding was characterized by a large and loose reticular fiber network in uADC, while dense bundles were found in uLMS. Notably, more similarities between reticulin fibers were observed in paired uLMS then paired uADCs. Transcriptomic and multiplex immunofluorescence-based immune profiling showed a higher abundance of T and B cells in primary tumor and in metastatic uADC than uLMS. Moreover, the epigenetic signature of paired samples in uADCs showed more differences than paired samples in uLMS. Some epigenetic variation was also found between the ITF of metastatic uADC and uLMS. Altogether, our data suggest a correlation between morphological and molecular changes at the ITF and the degree of aggressiveness. The use of DP tools for characterizing reticulin scaffolding and immune cell infiltration at the ITF in paired samples together with information provided by omics analyses in a large cohort will hopefully help validate novel biomarkers of tumor aggressiveness, develop new drugs and improve patient quality of life in a much more efficient way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明111完成签到 ,获得积分10
刚刚
刚刚
乌兰巴托没有海完成签到,获得积分20
刚刚
2秒前
科目三应助今我来思采纳,获得10
2秒前
3秒前
3秒前
重要冰薇完成签到,获得积分10
3秒前
Accepted完成签到,获得积分10
3秒前
4秒前
传奇3应助大胆盼兰采纳,获得30
4秒前
4秒前
福气小姐完成签到,获得积分10
7秒前
和平发展发布了新的文献求助10
8秒前
牛奶面包发布了新的文献求助10
8秒前
jy发布了新的文献求助10
8秒前
8秒前
8秒前
jiuge完成签到 ,获得积分10
8秒前
8秒前
128发布了新的文献求助10
9秒前
科研通AI5应助Ophelia采纳,获得10
9秒前
ling2001完成签到,获得积分10
9秒前
李健的小迷弟应助1234采纳,获得10
9秒前
杠头发布了新的文献求助20
10秒前
2032jia完成签到,获得积分10
11秒前
11秒前
ll应助大萝贝采纳,获得10
12秒前
星辰大海应助dasheng采纳,获得10
12秒前
领导范儿应助小卫采纳,获得10
13秒前
xu发布了新的文献求助100
14秒前
zjh完成签到,获得积分10
15秒前
雨不歇发布了新的文献求助10
15秒前
16秒前
iriyan完成签到,获得积分10
17秒前
高兴曼寒发布了新的文献求助10
17秒前
彭于晏应助yuyuyu采纳,获得10
18秒前
18秒前
18秒前
WZ0904发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543189
求助须知:如何正确求助?哪些是违规求助? 3120593
关于积分的说明 9343357
捐赠科研通 2818645
什么是DOI,文献DOI怎么找? 1549711
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713076