An unsupervised chatter detection method based on AE and merging GMM and K-means

规范化(社会学) 聚类分析 模式识别(心理学) 刀具磨损 人工智能 相似性(几何) 计算机科学 工程类 图像(数学) 机械工程 社会学 人类学 机械加工
作者
Bo Liu,Changfu Liu,Zhou Yang,Daohai Wang,Yichao Dun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:186: 109861-109861 被引量:45
标识
DOI:10.1016/j.ymssp.2022.109861
摘要

During metal cutting, chatter is prone to the effects of poor surface quality and tool wear. Therefore, chatter detection is becoming more and more important. The current hot methods are effective, but they also have limitations, such as the interference of human experience on the results, the need to label the data, and it takes a long time. This paper proposes an unsupervised milling chatter detection method based on a large number of unlabeled dynamic signals. The method does not depend on processing parameters and environment, does not require labels, and has strong stability. Based on auto-encode, each segment of the signal is compressed into two dimensions, and the feasibility of the reconstruction scheme is verified by numerical analysis. In the normalization algorithm, the similarity between the raw signal and the reconstructed signal is the highest, and the reconstruction effect is the best. Then, the compressed signals are clustered based on a hybrid clustering method combining GMM and K-means. Under the six evaluation indicators, compared with GMM, the clustering results of this scheme have been significantly improved. The evaluation metrics show that GMM-K-means is not only more stable but also has better result compared to K-means in chatter detection. The results show that the proposed method outperforms GMM and K-means in all six typical unsupervised evaluation metrics, and can detect chatter effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助23采纳,获得10
刚刚
LYH发布了新的文献求助10
1秒前
3秒前
sagasofmaya完成签到,获得积分10
3秒前
浮游应助美满的稚晴采纳,获得10
3秒前
3秒前
3秒前
程昌浩发布了新的文献求助10
4秒前
4秒前
4秒前
清秀秀发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
万能图书馆应助xing采纳,获得10
7秒前
7秒前
19205100313发布了新的文献求助10
9秒前
DamenS发布了新的文献求助10
9秒前
小杜发布了新的文献求助10
9秒前
璐瑶发布了新的文献求助10
9秒前
故酒发布了新的文献求助100
10秒前
可耐的世倌完成签到 ,获得积分10
11秒前
11秒前
12秒前
俭朴外绣发布了新的文献求助10
12秒前
汉堡包应助LYH采纳,获得10
13秒前
13秒前
13秒前
sunny33发布了新的文献求助10
13秒前
旺旺碎冰冰完成签到,获得积分10
13秒前
星辰大海应助廖翰彬采纳,获得10
14秒前
12应助歪比巴卜采纳,获得20
14秒前
16秒前
16秒前
程昌浩完成签到,获得积分10
16秒前
酒宜微醉发布了新的文献求助20
16秒前
edtaa发布了新的文献求助10
16秒前
灯没点完成签到,获得积分10
17秒前
Joker完成签到,获得积分10
17秒前
18秒前
袁大头发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179