An unsupervised chatter detection method based on AE and merging GMM and K-means

规范化(社会学) 聚类分析 模式识别(心理学) 刀具磨损 人工智能 相似性(几何) 计算机科学 工程类 图像(数学) 人类学 机械工程 社会学 机械加工
作者
Bo Liu,Changfu Liu,Zhou Yang,Daohai Wang,Yichao Dun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:186: 109861-109861 被引量:45
标识
DOI:10.1016/j.ymssp.2022.109861
摘要

During metal cutting, chatter is prone to the effects of poor surface quality and tool wear. Therefore, chatter detection is becoming more and more important. The current hot methods are effective, but they also have limitations, such as the interference of human experience on the results, the need to label the data, and it takes a long time. This paper proposes an unsupervised milling chatter detection method based on a large number of unlabeled dynamic signals. The method does not depend on processing parameters and environment, does not require labels, and has strong stability. Based on auto-encode, each segment of the signal is compressed into two dimensions, and the feasibility of the reconstruction scheme is verified by numerical analysis. In the normalization algorithm, the similarity between the raw signal and the reconstructed signal is the highest, and the reconstruction effect is the best. Then, the compressed signals are clustered based on a hybrid clustering method combining GMM and K-means. Under the six evaluation indicators, compared with GMM, the clustering results of this scheme have been significantly improved. The evaluation metrics show that GMM-K-means is not only more stable but also has better result compared to K-means in chatter detection. The results show that the proposed method outperforms GMM and K-means in all six typical unsupervised evaluation metrics, and can detect chatter effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
momo发布了新的文献求助10
1秒前
1秒前
rose完成签到,获得积分10
1秒前
无花果应助wll采纳,获得10
2秒前
2秒前
2秒前
九霄发布了新的文献求助10
2秒前
hzy发布了新的文献求助10
2秒前
2秒前
3秒前
orixero应助qyxqyx采纳,获得10
3秒前
科大第一深情完成签到,获得积分10
3秒前
4秒前
情怀应助热情的泓采纳,获得10
4秒前
4秒前
健忘书兰发布了新的文献求助10
4秒前
4秒前
hu发布了新的文献求助10
4秒前
Ava应助夜尽天明采纳,获得10
4秒前
xuan发布了新的文献求助10
4秒前
5秒前
天天快乐应助WangJ1018采纳,获得30
5秒前
xxxxxxxxx发布了新的文献求助10
5秒前
机智的鬼完成签到,获得积分10
6秒前
6秒前
Greyson完成签到,获得积分10
6秒前
华仔应助满天星采纳,获得10
6秒前
丘比特应助帅气的秘密采纳,获得10
6秒前
上官若男应助张潇潇采纳,获得10
7秒前
大个应助邹wl采纳,获得10
7秒前
xhmmm发布了新的文献求助10
7秒前
fjmelite发布了新的文献求助10
7秒前
8秒前
Orange应助Cx330采纳,获得10
8秒前
领导范儿应助李桢采纳,获得10
9秒前
www发布了新的文献求助10
9秒前
9秒前
搬砖人完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609460
求助须知:如何正确求助?哪些是违规求助? 4694074
关于积分的说明 14880935
捐赠科研通 4719643
什么是DOI,文献DOI怎么找? 2544750
邀请新用户注册赠送积分活动 1509658
关于科研通互助平台的介绍 1472950