An unsupervised chatter detection method based on AE and merging GMM and K-means

规范化(社会学) 聚类分析 模式识别(心理学) 刀具磨损 人工智能 相似性(几何) 计算机科学 工程类 图像(数学) 机械工程 社会学 人类学 机械加工
作者
Bo Liu,Changfu Liu,Zhou Yang,Daohai Wang,Yichao Dun
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:186: 109861-109861 被引量:45
标识
DOI:10.1016/j.ymssp.2022.109861
摘要

During metal cutting, chatter is prone to the effects of poor surface quality and tool wear. Therefore, chatter detection is becoming more and more important. The current hot methods are effective, but they also have limitations, such as the interference of human experience on the results, the need to label the data, and it takes a long time. This paper proposes an unsupervised milling chatter detection method based on a large number of unlabeled dynamic signals. The method does not depend on processing parameters and environment, does not require labels, and has strong stability. Based on auto-encode, each segment of the signal is compressed into two dimensions, and the feasibility of the reconstruction scheme is verified by numerical analysis. In the normalization algorithm, the similarity between the raw signal and the reconstructed signal is the highest, and the reconstruction effect is the best. Then, the compressed signals are clustered based on a hybrid clustering method combining GMM and K-means. Under the six evaluation indicators, compared with GMM, the clustering results of this scheme have been significantly improved. The evaluation metrics show that GMM-K-means is not only more stable but also has better result compared to K-means in chatter detection. The results show that the proposed method outperforms GMM and K-means in all six typical unsupervised evaluation metrics, and can detect chatter effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
timo完成签到,获得积分20
1秒前
1秒前
酷波er应助llcllc采纳,获得10
2秒前
2秒前
Xiang发布了新的文献求助10
4秒前
4秒前
anonymous发布了新的文献求助10
4秒前
5秒前
Owen应助心灵美的笑卉采纳,获得10
5秒前
爱lx发布了新的文献求助10
7秒前
nebula应助乐666采纳,获得10
8秒前
9秒前
emmm完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
ttsong2发布了新的文献求助10
11秒前
在水一方应助Russell采纳,获得10
12秒前
认真飞瑶发布了新的文献求助10
13秒前
耿强完成签到,获得积分10
14秒前
汤姆完成签到,获得积分10
15秒前
xhsz1111完成签到 ,获得积分10
15秒前
llcllc发布了新的文献求助10
15秒前
17秒前
Yatpome发布了新的文献求助20
17秒前
不上课不行完成签到,获得积分10
18秒前
Benliu发布了新的文献求助10
18秒前
观zz发布了新的文献求助10
19秒前
Mr_Right完成签到,获得积分10
19秒前
慕青应助GGBAO采纳,获得10
19秒前
19秒前
科研通AI5应助饼藏采纳,获得10
20秒前
llcllc完成签到,获得积分20
20秒前
小新完成签到 ,获得积分10
21秒前
22秒前
ding应助活泼稀采纳,获得10
22秒前
迷路筝发布了新的文献求助10
23秒前
23秒前
薛定谔完成签到,获得积分10
25秒前
陈珂发布了新的文献求助50
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578