Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile

抗菌肽 伪氨基酸组成 支持向量机 计算机科学 人工智能 机器学习 随机森林 任务(项目管理) k-最近邻算法 抗菌剂 生物 工程类 微生物学 生物化学 系统工程 二肽
作者
Asad Jan,Maqsood Hayat,Mohammad Wedyan,Ryan Alturki,Foziah Gazzawe,Hashim Ali,Fawaz Khaled Alarfaj
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106311-106311 被引量:11
标识
DOI:10.1016/j.compbiomed.2022.106311
摘要

Antimicrobial peptides (AMPs) are gaining a lot of attention as cutting-edge treatments for many infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has persisted for a long period, making them the greatest option for addressing the growing problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become more prominent, particularly in therapeutic applications. The prediction of AMPs has become a difficult task for academics due to the explosive increase of AMPs documented in databases. Wet-lab investigations to find anti-microbial peptides are exceedingly costly, time-consuming, and even impossible for some species. Therefore, in order to choose the optimal AMPs candidate before to the in-vitro trials, an efficient computational method must be developed. In this study, an effort was made to develop a machine learning-based classification system that is effective, accurate, and can distinguish between anti-microbial peptides. The position-specific-scoring-matrix (PSSM), Pseudo Amino acid composition, di-peptide composition, and combination of these three were utilized in the suggested scheme to extract salient aspects from AMPs sequences. The classification techniques K-nearest neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM) were employed. On the independent dataset and training dataset, the accuracy levels achieved by the suggested predictor (Target-AMP) are 97.07% and 95.71%, respectively. The results show that, when compared to other techniques currently used in the literature, our Target-AMP had the best success rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Niki完成签到,获得积分10
1秒前
闵问柳发布了新的文献求助10
1秒前
luiii发布了新的文献求助10
2秒前
听话的巧荷完成签到,获得积分20
2秒前
2秒前
彭于晏应助姚姚姚采纳,获得10
2秒前
斗罗大陆发布了新的文献求助10
2秒前
王讯发布了新的文献求助10
3秒前
某某发布了新的文献求助10
3秒前
无花果应助M张采纳,获得10
3秒前
小蘑菇应助M张采纳,获得10
3秒前
烟花应助M张采纳,获得10
4秒前
李健的小迷弟应助M张采纳,获得10
4秒前
ding应助M张采纳,获得10
4秒前
上官若男应助M张采纳,获得10
4秒前
小蘑菇应助M张采纳,获得30
4秒前
清爽老九发布了新的文献求助10
4秒前
5秒前
隐形曼青应助哦吼采纳,获得10
5秒前
5秒前
6秒前
科研门外汉完成签到,获得积分20
6秒前
马小强发布了新的文献求助10
7秒前
搜集达人应助闵问柳采纳,获得10
7秒前
luiii完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
亭亭玉立发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
子南完成签到,获得积分10
10秒前
zzzzz发布了新的文献求助10
10秒前
跳跃猫咪完成签到,获得积分10
11秒前
11秒前
11秒前
莫挨老子发布了新的文献求助10
12秒前
多情怡发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
中国农业科学院王强研究员团队:食品多尺度结构与品质功能调控 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196280
求助须知:如何正确求助?哪些是违规求助? 4378008
关于积分的说明 13634839
捐赠科研通 4233464
什么是DOI,文献DOI怎么找? 2322279
邀请新用户注册赠送积分活动 1320400
关于科研通互助平台的介绍 1270764