Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile

抗菌肽 伪氨基酸组成 支持向量机 计算机科学 人工智能 机器学习 随机森林 任务(项目管理) k-最近邻算法 抗菌剂 生物 工程类 微生物学 生物化学 系统工程 二肽
作者
Asad Jan,Maqsood Hayat,Mohammad Wedyan,Ryan Alturki,Foziah Gazzawe,Hashim Ali,Fawaz Khaled Alarfaj
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106311-106311 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.106311
摘要

Antimicrobial peptides (AMPs) are gaining a lot of attention as cutting-edge treatments for many infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has persisted for a long period, making them the greatest option for addressing the growing problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become more prominent, particularly in therapeutic applications. The prediction of AMPs has become a difficult task for academics due to the explosive increase of AMPs documented in databases. Wet-lab investigations to find anti-microbial peptides are exceedingly costly, time-consuming, and even impossible for some species. Therefore, in order to choose the optimal AMPs candidate before to the in-vitro trials, an efficient computational method must be developed. In this study, an effort was made to develop a machine learning-based classification system that is effective, accurate, and can distinguish between anti-microbial peptides. The position-specific-scoring-matrix (PSSM), Pseudo Amino acid composition, di-peptide composition, and combination of these three were utilized in the suggested scheme to extract salient aspects from AMPs sequences. The classification techniques K-nearest neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM) were employed. On the independent dataset and training dataset, the accuracy levels achieved by the suggested predictor (Target-AMP) are 97.07% and 95.71%, respectively. The results show that, when compared to other techniques currently used in the literature, our Target-AMP had the best success rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
5秒前
西瓜藤子发布了新的文献求助10
6秒前
momo完成签到,获得积分10
6秒前
baixue发布了新的文献求助10
7秒前
8秒前
听雨发布了新的文献求助10
9秒前
Wang完成签到 ,获得积分10
10秒前
快看小花123完成签到,获得积分10
11秒前
11秒前
小禾发布了新的文献求助10
12秒前
姜姜研完成签到 ,获得积分10
12秒前
13秒前
小二郎应助刻苦的小虾米采纳,获得10
14秒前
14秒前
kento发布了新的文献求助30
14秒前
fangfang完成签到,获得积分10
16秒前
17秒前
18秒前
JHY发布了新的文献求助10
18秒前
21秒前
CipherSage应助范浩然采纳,获得10
22秒前
小禾完成签到,获得积分20
23秒前
yyyq0721发布了新的文献求助10
23秒前
温暖汽车完成签到,获得积分10
24秒前
糖果雨完成签到,获得积分10
25秒前
25秒前
LLL完成签到,获得积分10
28秒前
28秒前
Lucas应助俗人采纳,获得10
30秒前
NIKO发布了新的文献求助10
30秒前
何楠楠发布了新的文献求助10
30秒前
糖果雨发布了新的文献求助10
31秒前
beckham完成签到,获得积分10
31秒前
31秒前
32秒前
33秒前
Fawn发布了新的文献求助10
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233285
求助须知:如何正确求助?哪些是违规求助? 2879856
关于积分的说明 8212977
捐赠科研通 2547323
什么是DOI,文献DOI怎么找? 1376744
科研通“疑难数据库(出版商)”最低求助积分说明 647692
邀请新用户注册赠送积分活动 623115