Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile

抗菌肽 伪氨基酸组成 支持向量机 计算机科学 人工智能 机器学习 随机森林 任务(项目管理) k-最近邻算法 抗菌剂 生物 工程类 微生物学 生物化学 系统工程 二肽
作者
Asad Jan,Maqsood Hayat,Mohammad Wedyan,Ryan Alturki,Foziah Gazzawe,Hashim Ali,Fawaz Khaled Alarfaj
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106311-106311 被引量:11
标识
DOI:10.1016/j.compbiomed.2022.106311
摘要

Antimicrobial peptides (AMPs) are gaining a lot of attention as cutting-edge treatments for many infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has persisted for a long period, making them the greatest option for addressing the growing problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become more prominent, particularly in therapeutic applications. The prediction of AMPs has become a difficult task for academics due to the explosive increase of AMPs documented in databases. Wet-lab investigations to find anti-microbial peptides are exceedingly costly, time-consuming, and even impossible for some species. Therefore, in order to choose the optimal AMPs candidate before to the in-vitro trials, an efficient computational method must be developed. In this study, an effort was made to develop a machine learning-based classification system that is effective, accurate, and can distinguish between anti-microbial peptides. The position-specific-scoring-matrix (PSSM), Pseudo Amino acid composition, di-peptide composition, and combination of these three were utilized in the suggested scheme to extract salient aspects from AMPs sequences. The classification techniques K-nearest neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM) were employed. On the independent dataset and training dataset, the accuracy levels achieved by the suggested predictor (Target-AMP) are 97.07% and 95.71%, respectively. The results show that, when compared to other techniques currently used in the literature, our Target-AMP had the best success rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
sciDoge完成签到,获得积分10
2秒前
超级安荷发布了新的文献求助10
2秒前
3秒前
一只耳发布了新的文献求助10
4秒前
glacier发布了新的文献求助10
6秒前
KYDZZ应助知世耶采纳,获得10
7秒前
8秒前
小蘑菇应助sun采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
科研小菜发布了新的文献求助20
14秒前
shhoing应助Bill采纳,获得10
14秒前
15秒前
123完成签到 ,获得积分10
15秒前
KUN完成签到,获得积分10
16秒前
liberal完成签到,获得积分10
17秒前
17秒前
17秒前
燕双鹰完成签到,获得积分10
18秒前
hahaha完成签到,获得积分20
18秒前
丘比特应助fffgz采纳,获得10
18秒前
18秒前
熊风发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
hahaha发布了新的文献求助10
21秒前
陈帅洲发布了新的文献求助10
22秒前
本宫还能学完成签到,获得积分10
23秒前
领导范儿应助成就的涵菡采纳,获得10
23秒前
lingjunjie发布了新的文献求助10
23秒前
麦子完成签到,获得积分10
24秒前
sun发布了新的文献求助10
25秒前
123456发布了新的文献求助10
25秒前
abu发布了新的文献求助10
25秒前
26秒前
26秒前
天天快乐应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937