Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile

抗菌肽 伪氨基酸组成 支持向量机 计算机科学 人工智能 机器学习 随机森林 任务(项目管理) k-最近邻算法 抗菌剂 生物 工程类 微生物学 生物化学 系统工程 二肽
作者
Asad Jan,Maqsood Hayat,Mohammad Wedyan,Ryan Alturki,Foziah Gazzawe,Hashim Ali,Fawaz Khaled Alarfaj
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106311-106311 被引量:11
标识
DOI:10.1016/j.compbiomed.2022.106311
摘要

Antimicrobial peptides (AMPs) are gaining a lot of attention as cutting-edge treatments for many infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has persisted for a long period, making them the greatest option for addressing the growing problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become more prominent, particularly in therapeutic applications. The prediction of AMPs has become a difficult task for academics due to the explosive increase of AMPs documented in databases. Wet-lab investigations to find anti-microbial peptides are exceedingly costly, time-consuming, and even impossible for some species. Therefore, in order to choose the optimal AMPs candidate before to the in-vitro trials, an efficient computational method must be developed. In this study, an effort was made to develop a machine learning-based classification system that is effective, accurate, and can distinguish between anti-microbial peptides. The position-specific-scoring-matrix (PSSM), Pseudo Amino acid composition, di-peptide composition, and combination of these three were utilized in the suggested scheme to extract salient aspects from AMPs sequences. The classification techniques K-nearest neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM) were employed. On the independent dataset and training dataset, the accuracy levels achieved by the suggested predictor (Target-AMP) are 97.07% and 95.71%, respectively. The results show that, when compared to other techniques currently used in the literature, our Target-AMP had the best success rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abcdefg完成签到,获得积分10
2秒前
小金鱼发布了新的文献求助10
2秒前
木子完成签到 ,获得积分10
3秒前
爆米花应助13采纳,获得10
3秒前
Janely完成签到,获得积分10
4秒前
坚强香旋发布了新的文献求助10
4秒前
周周发布了新的文献求助10
5秒前
hohokuz完成签到,获得积分10
6秒前
Joy完成签到,获得积分10
6秒前
7秒前
仲半邪完成签到,获得积分10
7秒前
zz发布了新的文献求助10
7秒前
草莓不梅发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
10秒前
11秒前
sooo发布了新的文献求助10
11秒前
yangdoudou完成签到,获得积分10
11秒前
科研通AI6.1应助星星采纳,获得10
11秒前
GRX1110发布了新的文献求助10
12秒前
yy完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
嘉梦完成签到,获得积分10
15秒前
酷波er应助凶狗睡大石采纳,获得10
15秒前
CAOHOU应助yy采纳,获得10
16秒前
SAD完成签到,获得积分20
16秒前
17秒前
慕青应助光亮的万天采纳,获得10
17秒前
哈士奇野猪完成签到,获得积分20
17秒前
18秒前
18秒前
美满的红酒完成签到 ,获得积分10
18秒前
西西发布了新的文献求助10
19秒前
BINGBING1230发布了新的文献求助30
19秒前
CodeCraft应助豆芽菜采纳,获得10
20秒前
可爱的函函应助TT001采纳,获得10
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146