清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile

抗菌肽 伪氨基酸组成 支持向量机 计算机科学 人工智能 机器学习 随机森林 任务(项目管理) k-最近邻算法 抗菌剂 生物 工程类 微生物学 生物化学 系统工程 二肽
作者
Asad Jan,Maqsood Hayat,Mohammad Wedyan,Ryan Alturki,Foziah Gazzawe,Hashim Ali,Fawaz Khaled Alarfaj
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106311-106311 被引量:11
标识
DOI:10.1016/j.compbiomed.2022.106311
摘要

Antimicrobial peptides (AMPs) are gaining a lot of attention as cutting-edge treatments for many infectious disorders. The effectiveness of AMPs against bacteria, fungi, and viruses has persisted for a long period, making them the greatest option for addressing the growing problem of antibiotic resistance. Due to their wide-ranging actions, AMPs have become more prominent, particularly in therapeutic applications. The prediction of AMPs has become a difficult task for academics due to the explosive increase of AMPs documented in databases. Wet-lab investigations to find anti-microbial peptides are exceedingly costly, time-consuming, and even impossible for some species. Therefore, in order to choose the optimal AMPs candidate before to the in-vitro trials, an efficient computational method must be developed. In this study, an effort was made to develop a machine learning-based classification system that is effective, accurate, and can distinguish between anti-microbial peptides. The position-specific-scoring-matrix (PSSM), Pseudo Amino acid composition, di-peptide composition, and combination of these three were utilized in the suggested scheme to extract salient aspects from AMPs sequences. The classification techniques K-nearest neighbor (KNN), Random Forest (RF), and Support Vector Machine (SVM) were employed. On the independent dataset and training dataset, the accuracy levels achieved by the suggested predictor (Target-AMP) are 97.07% and 95.71%, respectively. The results show that, when compared to other techniques currently used in the literature, our Target-AMP had the best success rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白小丸子完成签到,获得积分10
5秒前
www发布了新的文献求助30
6秒前
蔡从安发布了新的文献求助10
9秒前
脑洞疼应助蔡从安采纳,获得10
16秒前
24秒前
彩色的芷容完成签到 ,获得积分10
54秒前
东郭凝蝶完成签到 ,获得积分10
1分钟前
宇文非笑完成签到 ,获得积分0
1分钟前
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
2分钟前
2分钟前
apckkk完成签到 ,获得积分10
2分钟前
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
默默雪旋完成签到 ,获得积分10
3分钟前
坚强的铅笔完成签到 ,获得积分10
3分钟前
wdy111应助wbh采纳,获得20
3分钟前
无限晓蓝完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
4分钟前
XIA完成签到 ,获得积分10
4分钟前
喜悦的香之完成签到 ,获得积分10
4分钟前
嘻嘻哈哈啊完成签到 ,获得积分10
4分钟前
科研佟完成签到 ,获得积分10
4分钟前
Skywalk满天星完成签到,获得积分10
4分钟前
心想事成完成签到 ,获得积分10
4分钟前
Lny发布了新的文献求助10
4分钟前
通科研完成签到 ,获得积分10
5分钟前
在水一方应助飞翔的企鹅采纳,获得10
5分钟前
creep2020完成签到,获得积分10
5分钟前
小二郎应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
少年完成签到,获得积分10
5分钟前
liuzhigang完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990603
求助须知:如何正确求助?哪些是违规求助? 3532220
关于积分的说明 11256532
捐赠科研通 3271057
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234