Prediction of Admission Costs Following Anterior Cervical Discectomy and Fusion Utilizing Machine Learning

医学 报销 总成本 回顾性队列研究 入射(几何) 颈椎前路椎间盘切除融合术 医疗成本与利用项目 急诊医学 医疗保健 外科 颈椎 经济增长 光学 物理 经济 微观经济学
作者
Anirudh K. Gowd,Avinesh Agarwalla,Edward C. Beck,Peter B. Derman,Siamak Yasmeh,Todd J. Albert,Joseph N. Liu
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (22): 1549-1557 被引量:8
标识
DOI:10.1097/brs.0000000000004436
摘要

Study Design. Retrospective case series. Objective. Predict cost following anterior cervical discectomy and fusion (ACDF) within the 90-day global period using machine learning models. Background. The incidence of ACDF has been increasing with a disproportionate decrease in reimbursement. As bundled payment models become common, it is imperative to identify factors that impact the cost of care. Materials and Methods. The Nationwide Readmissions Database (NRD) was accessed in 2018 for all primary ACDFs by the International Classification of Diseases 10th Revision (ICD-10) procedure codes. Costs were calculated by utilizing the total hospital charge and each hospital’s cost-to-charge ratio. Hospital characteristics, such as volume of procedures performed and wage index, were also queried. Readmissions within 90 days were identified, and cost of readmissions was added to the total admission cost to represent the 90-day healthcare cost. Machine learning algorithms were used to predict patients with 90-day admission costs >1 SD from the mean. Results. There were 42,485 procedures included in this investigation with an average age of 57.7±12.3 years with 50.6% males. The average cost of the operative admission was $24,874±25,610, the average cost of readmission was $25,371±11,476, and the average total cost was $26,977±28,947 including readmissions costs. There were 10,624 patients who were categorized as high cost. Wage index, hospital volume, age, and diagnosis-related group severity were most correlated with the total cost of care. Gradient boosting trees algorithm was most predictive of the total cost of care (area under the curve=0.86). Conclusions. Bundled payment models utilize wage index and diagnosis-related groups to determine reimbursement of ACDF. However, machine learning algorithms identified additional variables, such as hospital volume, readmission, and patient age, that are also important for determining the cost of care. Machine learning can improve cost-effectiveness and reduce the financial burden placed upon physicians and hospitals by implementing patient-specific reimbursement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廿二发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
刚刚
神勇晓旋完成签到,获得积分10
刚刚
eye完成签到,获得积分10
刚刚
十一完成签到,获得积分10
1秒前
1秒前
2秒前
hailan完成签到,获得积分10
2秒前
Survive完成签到,获得积分10
2秒前
花已烬完成签到,获得积分10
3秒前
MIZU完成签到,获得积分10
4秒前
leezz发布了新的文献求助10
4秒前
凡凡发布了新的文献求助10
4秒前
4秒前
加油少年完成签到,获得积分10
5秒前
SciGPT应助十一采纳,获得10
5秒前
yao完成签到,获得积分10
5秒前
负责御姐完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
暗中观察发布了新的文献求助10
7秒前
8秒前
8秒前
完美世界应助群_科大采纳,获得10
8秒前
羊羊羊发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
superchili完成签到,获得积分10
11秒前
神勇晓旋发布了新的文献求助10
11秒前
凡凡完成签到,获得积分10
11秒前
linxm7完成签到,获得积分10
12秒前
Mark完成签到,获得积分10
12秒前
一枚小豆完成签到,获得积分10
13秒前
yaooo发布了新的文献求助10
13秒前
xiaobei88完成签到,获得积分10
14秒前
哼哼完成签到,获得积分10
15秒前
吱吱熊sama完成签到,获得积分10
15秒前
村村发布了新的文献求助10
15秒前
erniu发布了新的文献求助20
16秒前
阿巴阿巴完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027