Prediction of Admission Costs Following Anterior Cervical Discectomy and Fusion Utilizing Machine Learning

医学 报销 总成本 回顾性队列研究 入射(几何) 颈椎前路椎间盘切除融合术 医疗成本与利用项目 急诊医学 医疗保健 外科 颈椎 经济增长 光学 物理 经济 微观经济学
作者
Anirudh K. Gowd,Avinesh Agarwalla,Edward C. Beck,Peter B. Derman,Siamak Yasmeh,Todd J. Albert,Joseph N. Liu
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:47 (22): 1549-1557 被引量:8
标识
DOI:10.1097/brs.0000000000004436
摘要

Retrospective case series.Predict cost following anterior cervical discectomy and fusion (ACDF) within the 90-day global period using machine learning models.The incidence of ACDF has been increasing with a disproportionate decrease in reimbursement. As bundled payment models become common, it is imperative to identify factors that impact the cost of care.The Nationwide Readmissions Database (NRD) was accessed in 2018 for all primary ACDFs by the International Classification of Diseases 10th Revision (ICD-10) procedure codes. Costs were calculated by utilizing the total hospital charge and each hospital's cost-to-charge ratio. Hospital characteristics, such as volume of procedures performed and wage index, were also queried. Readmissions within 90 days were identified, and cost of readmissions was added to the total admission cost to represent the 90-day healthcare cost. Machine learning algorithms were used to predict patients with 90-day admission costs >1 SD from the mean.There were 42,485 procedures included in this investigation with an average age of 57.7±12.3 years with 50.6% males. The average cost of the operative admission was $24,874±25,610, the average cost of readmission was $25,371±11,476, and the average total cost was $26,977±28,947 including readmissions costs. There were 10,624 patients who were categorized as high cost. Wage index, hospital volume, age, and diagnosis-related group severity were most correlated with the total cost of care. Gradient boosting trees algorithm was most predictive of the total cost of care (area under the curve=0.86).Bundled payment models utilize wage index and diagnosis-related groups to determine reimbursement of ACDF. However, machine learning algorithms identified additional variables, such as hospital volume, readmission, and patient age, that are also important for determining the cost of care. Machine learning can improve cost-effectiveness and reduce the financial burden placed upon physicians and hospitals by implementing patient-specific reimbursement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yaowei完成签到,获得积分10
1秒前
铅笔995完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
爆米花应助徐昊雯采纳,获得10
2秒前
2秒前
123完成签到 ,获得积分10
3秒前
可靠远山完成签到 ,获得积分10
3秒前
3秒前
太阳完成签到,获得积分10
3秒前
evergarden发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
TNT应助liyi采纳,获得10
4秒前
fyfly发布了新的文献求助10
5秒前
5秒前
5秒前
典雅的俊驰应助xun采纳,获得30
5秒前
开放的柚子完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
可靠远山关注了科研通微信公众号
7秒前
7秒前
HopeStar完成签到,获得积分10
7秒前
8秒前
失眠的霸完成签到,获得积分10
9秒前
RHLVE应助戚薇采纳,获得20
9秒前
9秒前
wjx发布了新的文献求助10
9秒前
shuangcheng发布了新的文献求助10
9秒前
charm12发布了新的文献求助10
9秒前
研友_VZG7GZ应助fyfly采纳,获得10
10秒前
10秒前
全糖完成签到,获得积分10
10秒前
吴志新完成签到,获得积分10
10秒前
心旷神怡发布了新的文献求助10
10秒前
Jiaocm完成签到,获得积分10
11秒前
海的蓝色是水完成签到,获得积分20
11秒前
天天快乐应助明天过后采纳,获得10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646