p38丝裂原活化蛋白激酶
一氧化氮
化学
一氧化氮合酶
水解物
血红素加氧酶
MAPK/ERK通路
磷酸化
蛋白激酶A
药理学
生物化学
激酶
锌原卟啉
活性氧
炎症
脂多糖
环氧合酶
生物
酶
血红素
免疫学
水解
有机化学
作者
Chathuri Kaushalya Marasinghe,Won‐Kyo Jung,Jae‐Young Je
摘要
Potential anti-inflammatory effects of ark shell (Scapharca subcrenata) protein hydrolysates were investigated. Ark shell protein hydrolysates were prepared using Alcalase® and pepsin and were designated ASAH and ASPH, respectively. The nitric oxide (NO) inhibitory activity of ASAH and ASPH was determined in lipopolysaccharides (LPS)-stimulated RAW264.7 murine macrophages, and the results showed that ASAH inhibited better NO inhibitory activity than ASPH. ASAH suppressed inflammatory mediator, a prostaglandin E2, secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), and production of reactive oxygen species (ROS) dose dependently. It inhibited the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and simulated heme oxygenase-1 (HO-1) protein expression. However, the pharmacological approach revealed that pretreatment with zinc protoporphyrin ІX (ZnPP), an inhibitor of HO-1, reversed the anti-inflammatory effect of ASAH. Moreover, ASAH upregulated phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, JNK1/2, and p38 MAPK. To find out the role of MAPKs phosphorylation, MAPKs inhibitors were used, and the results showed that ASAH-mediated HO-1 protein expression and Nrf2 nuclear translocation were abolished. Taken all together, this study revealed that ASAH has a potential anti-inflammatory activity through regulation of the MAPK-dependent HO-1/Nrf2 pathway. Practical applications Food-derived marine bioactive peptides, due to their pivotal role in biological activities, are gaining much attention recently. However, the anti-inflammatory activities of ark shell protein hydrolysates still remain to be investigated. This study investigated that ASAH shows potential anti-inflammatory activities through regulation of the MAPK-dependent HO-1/Nrf2 pathway in RAW264.7 murine macrophages. These findings indicated that ASAH may be used as a dietary supplement, functional food, and medicinal drug for the management of inflammation and inflammation-associated diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI