DeepFEM: A Novel Element-Based Deep Learning Approach for Solving Nonlinear Partial Differential Equations in Computational Solid Mechanics

非线性系统 人工神经网络 偏微分方程 固体力学 计算机科学 应用数学 有限元法 数学 人工智能 数学分析 物理 结构工程 工程类 材料科学 量子力学 复合材料
作者
Yijia Dong,Tao Liu,Zhi-Min Li,Pizhong Qiao
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:149 (2) 被引量:10
标识
DOI:10.1061/jenmdt.emeng-6643
摘要

In this paper, an element-based deep learning approach named DeepFEM for solving nonlinear partial differential equations (PDEs) in solid mechanics is developed to reduce the number of sampling points required for training the deep neural network. Shape functions are introduced into deep learning to approximate the displacement field within the element. A general scheme for training the deep neural network based on derivatives computed from the shape functions is proposed. For the sake of demonstrations, the nonlinear vibration, nonlinear bending, and cohesive fracture problems are solved, and the results are compared with those from the existing methods to evaluate the performance of the present method. The results demonstrate that DeepFEM can effectively approximate the solution of the nonlinear mechanics problems with high accuracy, while the shape functions can significantly improve the computational efficiency. Moreover, with the trained DeepFEM model, the solutions of nonlinear problems with different geometric or material properties can be obtained instantly without retraining. Finally, the proposed DeepFEM is employed in the identification of material parameters of composite plate. The results show that the longitudinal and transverse elastic moduli of the ply in the composite plates can be accurately predicted based on the nonlinear mechanical response of plates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
di发布了新的文献求助10
刚刚
刚刚
刚刚
海峰荣发布了新的文献求助10
刚刚
刚刚
余姓懒完成签到,获得积分10
刚刚
有魅力的超短裙完成签到,获得积分10
1秒前
jonghuang发布了新的文献求助10
1秒前
叶子发布了新的文献求助10
3秒前
浮游应助小超人采纳,获得10
3秒前
4秒前
feifei发布了新的文献求助10
5秒前
二三发布了新的文献求助10
5秒前
Owen应助认真的小丸子采纳,获得10
5秒前
6秒前
天天快乐应助yrd采纳,获得10
7秒前
kingwill应助xmz采纳,获得20
7秒前
leoott完成签到,获得积分10
7秒前
沐沐发布了新的文献求助10
7秒前
bobo呀发布了新的文献求助10
7秒前
xmhxpz发布了新的文献求助10
8秒前
小白I实验完成签到,获得积分10
8秒前
ding应助flynn3735采纳,获得10
9秒前
9秒前
10秒前
TIAN关注了科研通微信公众号
10秒前
111完成签到,获得积分10
10秒前
opp发布了新的文献求助10
12秒前
菠萝完成签到,获得积分10
13秒前
Sakura完成签到,获得积分10
13秒前
帅气绝施发布了新的文献求助10
14秒前
15秒前
yuzhongLuo发布了新的文献求助10
15秒前
我就叫渣渣辉吧完成签到,获得积分10
16秒前
16秒前
修仙中应助优秀的方盒采纳,获得10
16秒前
17秒前
直率如凡完成签到,获得积分10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708