Promoting electrocatalytic hydrogenation of 5-hydroxymethylfurfural using buffer electrolytes as proton-donating motifs: Theoretical predictions and experimental validations

化学 催化作用 电解质 产量(工程) 氧化物 甲醇 磷酸盐缓冲盐水 质子 无机化学 有机化学 电极 物理化学 材料科学 色谱法 物理 冶金 量子力学
作者
Xiaoqiang Pan,Xinyu Zhang,Gui‐Xiang Huang,Shu‐Chuan Mei,Jiawei Huang,Jie‐Jie Chen,Wujun Liu,Han‐Qing Yu
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:323: 122191-122191 被引量:30
标识
DOI:10.1016/j.apcatb.2022.122191
摘要

Electrocatalytic hydrogenation (ECH) represents a promising alternative to conventional hydrogenation techniques with high-pressure H2 as a reductant. The proton-donating motif is an important factor governing the reaction efficiency but is usually overlooked in the ECH process. Herein, on the basis of density functional theory (DFT) predictions and experimental validations, we demonstrate that proton-buffer salts such as phosphate, carbonate and borate can greatly promote ECH efficiency. The DFT results predict that the buffer species can outperform water in donating protons for *CO hydrogenation into *C-OH via the Langmuir-Hinshelwood or proton-coupled electron transfer (PCET) mechanism, thus promoting the hydrogenation of carbonyl compounds. The experimental results demonstrate that with the buffer-promoting effects, 5-hydroxymethylfurfural (HMF) can be effectively converted at an efficiency of 96 % into the value-added 2,5-dihydroxymethylfuran (DHMF) with a yield of 80 % over cobalt oxide (Co3O4) nanoarray catalysts under near-neutral buffer electrolyte. In situ Raman analysis and kinetic isotope experimental results reveal that the real mechanism is a combined Langmuir-Hinshelwood and PCET process. Such a buffer-promoting strategy also exhibits wide applicability in ECH of various other carbonyl compounds with different electrode catalysts. This work may provide a deep understanding of the ECH process and open up new opportunities to design effective systems for the conversion of HMF into value-added products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VIVI发布了新的文献求助100
刚刚
Yuan完成签到 ,获得积分10
1秒前
辛勤的寒荷关注了科研通微信公众号
2秒前
大模型应助小黑采纳,获得20
2秒前
3秒前
888发布了新的文献求助30
4秒前
泥豪泥嚎完成签到 ,获得积分10
5秒前
杨杨完成签到,获得积分10
6秒前
6秒前
彩色橘子发布了新的文献求助10
7秒前
汉堡包应助聪慧丹寒采纳,获得10
8秒前
Tin完成签到 ,获得积分10
8秒前
WXY发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
自信绿蝶完成签到,获得积分10
10秒前
10秒前
10秒前
烟花应助888采纳,获得10
10秒前
yunyueqixun完成签到,获得积分10
10秒前
SciGPT应助风起采纳,获得10
10秒前
11秒前
12秒前
太阳啊发布了新的文献求助10
13秒前
apple红了完成签到 ,获得积分10
13秒前
Vanessa完成签到 ,获得积分10
13秒前
铁岭砍王发布了新的文献求助10
14秒前
14秒前
Jasper应助Antares采纳,获得10
14秒前
Akim应助自然莫英采纳,获得10
15秒前
15秒前
15秒前
15秒前
yuu发布了新的文献求助10
16秒前
无极微光应助wuuw采纳,获得20
16秒前
16秒前
仲谋发布了新的文献求助10
17秒前
愉快寄真完成签到,获得积分10
17秒前
zhanglan完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995