Promoting electrocatalytic hydrogenation of 5-hydroxymethylfurfural using buffer electrolytes as proton-donating motifs: Theoretical predictions and experimental validations

化学 催化作用 电解质 产量(工程) 氧化物 甲醇 磷酸盐缓冲盐水 质子 无机化学 有机化学 电极 物理化学 材料科学 色谱法 物理 冶金 量子力学
作者
Xiaoqiang Pan,Xinyu Zhang,Gui‐Xiang Huang,Shu‐Chuan Mei,Jiawei Huang,Jie‐Jie Chen,Wujun Liu,Han‐Qing Yu
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:323: 122191-122191 被引量:30
标识
DOI:10.1016/j.apcatb.2022.122191
摘要

Electrocatalytic hydrogenation (ECH) represents a promising alternative to conventional hydrogenation techniques with high-pressure H2 as a reductant. The proton-donating motif is an important factor governing the reaction efficiency but is usually overlooked in the ECH process. Herein, on the basis of density functional theory (DFT) predictions and experimental validations, we demonstrate that proton-buffer salts such as phosphate, carbonate and borate can greatly promote ECH efficiency. The DFT results predict that the buffer species can outperform water in donating protons for *CO hydrogenation into *C-OH via the Langmuir-Hinshelwood or proton-coupled electron transfer (PCET) mechanism, thus promoting the hydrogenation of carbonyl compounds. The experimental results demonstrate that with the buffer-promoting effects, 5-hydroxymethylfurfural (HMF) can be effectively converted at an efficiency of 96 % into the value-added 2,5-dihydroxymethylfuran (DHMF) with a yield of 80 % over cobalt oxide (Co3O4) nanoarray catalysts under near-neutral buffer electrolyte. In situ Raman analysis and kinetic isotope experimental results reveal that the real mechanism is a combined Langmuir-Hinshelwood and PCET process. Such a buffer-promoting strategy also exhibits wide applicability in ECH of various other carbonyl compounds with different electrode catalysts. This work may provide a deep understanding of the ECH process and open up new opportunities to design effective systems for the conversion of HMF into value-added products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海子发布了新的文献求助20
刚刚
aichifan完成签到,获得积分10
1秒前
左左完成签到,获得积分10
1秒前
1秒前
2秒前
老实善愁发布了新的文献求助10
2秒前
2秒前
2秒前
Serendipity完成签到,获得积分10
3秒前
纸农完成签到,获得积分10
3秒前
bkagyin应助猫尔儿采纳,获得30
3秒前
aiyu完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
一坞鱼完成签到,获得积分10
5秒前
hanzhua132发布了新的文献求助10
5秒前
11220发布了新的文献求助10
5秒前
5秒前
addd完成签到,获得积分20
5秒前
LX发布了新的文献求助10
6秒前
6秒前
Youth完成签到,获得积分10
6秒前
自信的雨安完成签到,获得积分20
6秒前
洋葱王子发布了新的文献求助10
6秒前
orixero应助动听的冬日采纳,获得10
6秒前
marcl完成签到,获得积分10
6秒前
11完成签到,获得积分10
6秒前
大个应助qhg采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
yi完成签到,获得积分10
8秒前
福林古斯完成签到 ,获得积分10
8秒前
科研通AI6应助tjt采纳,获得10
8秒前
蓝桉发布了新的文献求助30
9秒前
li发布了新的文献求助10
9秒前
甜蜜黄豆发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764