Promoting electrocatalytic hydrogenation of 5-hydroxymethylfurfural using buffer electrolytes as proton-donating motifs: Theoretical predictions and experimental validations

化学 催化作用 电解质 产量(工程) 氧化物 甲醇 磷酸盐缓冲盐水 质子 无机化学 有机化学 电极 物理化学 材料科学 色谱法 物理 冶金 量子力学
作者
Xiaoqiang Pan,Xinyu Zhang,Gui‐Xiang Huang,Shu‐Chuan Mei,Jiawei Huang,Jie‐Jie Chen,Wujun Liu,Han‐Qing Yu
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:323: 122191-122191 被引量:30
标识
DOI:10.1016/j.apcatb.2022.122191
摘要

Electrocatalytic hydrogenation (ECH) represents a promising alternative to conventional hydrogenation techniques with high-pressure H2 as a reductant. The proton-donating motif is an important factor governing the reaction efficiency but is usually overlooked in the ECH process. Herein, on the basis of density functional theory (DFT) predictions and experimental validations, we demonstrate that proton-buffer salts such as phosphate, carbonate and borate can greatly promote ECH efficiency. The DFT results predict that the buffer species can outperform water in donating protons for *CO hydrogenation into *C-OH via the Langmuir-Hinshelwood or proton-coupled electron transfer (PCET) mechanism, thus promoting the hydrogenation of carbonyl compounds. The experimental results demonstrate that with the buffer-promoting effects, 5-hydroxymethylfurfural (HMF) can be effectively converted at an efficiency of 96 % into the value-added 2,5-dihydroxymethylfuran (DHMF) with a yield of 80 % over cobalt oxide (Co3O4) nanoarray catalysts under near-neutral buffer electrolyte. In situ Raman analysis and kinetic isotope experimental results reveal that the real mechanism is a combined Langmuir-Hinshelwood and PCET process. Such a buffer-promoting strategy also exhibits wide applicability in ECH of various other carbonyl compounds with different electrode catalysts. This work may provide a deep understanding of the ECH process and open up new opportunities to design effective systems for the conversion of HMF into value-added products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen2436发布了新的文献求助10
刚刚
www完成签到 ,获得积分10
刚刚
自信的易云关注了科研通微信公众号
刚刚
1秒前
sakura发布了新的文献求助10
1秒前
jasmine完成签到,获得积分10
2秒前
2秒前
刘唐荣发布了新的文献求助10
2秒前
科研通AI6应助HC采纳,获得10
2秒前
orixero应助King采纳,获得10
2秒前
3秒前
3秒前
科研通AI2S应助wxd4775采纳,获得10
3秒前
3秒前
旺旺发布了新的文献求助10
4秒前
ye完成签到,获得积分10
4秒前
勤劳母鸡完成签到,获得积分10
4秒前
mikasa应助卷心菜采纳,获得10
5秒前
5秒前
5秒前
英俊的铭应助Pistache33采纳,获得30
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
喵喵喵啊发布了新的文献求助10
7秒前
bhjSIde完成签到,获得积分10
7秒前
Ava应助清水小镇采纳,获得10
8秒前
123456发布了新的文献求助20
8秒前
8秒前
霍师傅发布了新的文献求助10
8秒前
晴天完成签到,获得积分20
8秒前
刘唐荣完成签到,获得积分10
9秒前
LL发布了新的文献求助10
9秒前
9秒前
健忘荧完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助zsyf采纳,获得10
12秒前
12秒前
XYZ发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609955
求助须知:如何正确求助?哪些是违规求助? 4694535
关于积分的说明 14882709
捐赠科研通 4720767
什么是DOI,文献DOI怎么找? 2544982
邀请新用户注册赠送积分活动 1509819
关于科研通互助平台的介绍 1473013