Promoting electrocatalytic hydrogenation of 5-hydroxymethylfurfural using buffer electrolytes as proton-donating motifs: Theoretical predictions and experimental validations

化学 催化作用 电解质 产量(工程) 氧化物 甲醇 磷酸盐缓冲盐水 质子 无机化学 有机化学 电极 物理化学 材料科学 色谱法 物理 冶金 量子力学
作者
Xiaoqiang Pan,Xinyu Zhang,Gui‐Xiang Huang,Shu‐Chuan Mei,Jiawei Huang,Jie‐Jie Chen,Wujun Liu,Han‐Qing Yu
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:323: 122191-122191 被引量:30
标识
DOI:10.1016/j.apcatb.2022.122191
摘要

Electrocatalytic hydrogenation (ECH) represents a promising alternative to conventional hydrogenation techniques with high-pressure H2 as a reductant. The proton-donating motif is an important factor governing the reaction efficiency but is usually overlooked in the ECH process. Herein, on the basis of density functional theory (DFT) predictions and experimental validations, we demonstrate that proton-buffer salts such as phosphate, carbonate and borate can greatly promote ECH efficiency. The DFT results predict that the buffer species can outperform water in donating protons for *CO hydrogenation into *C-OH via the Langmuir-Hinshelwood or proton-coupled electron transfer (PCET) mechanism, thus promoting the hydrogenation of carbonyl compounds. The experimental results demonstrate that with the buffer-promoting effects, 5-hydroxymethylfurfural (HMF) can be effectively converted at an efficiency of 96 % into the value-added 2,5-dihydroxymethylfuran (DHMF) with a yield of 80 % over cobalt oxide (Co3O4) nanoarray catalysts under near-neutral buffer electrolyte. In situ Raman analysis and kinetic isotope experimental results reveal that the real mechanism is a combined Langmuir-Hinshelwood and PCET process. Such a buffer-promoting strategy also exhibits wide applicability in ECH of various other carbonyl compounds with different electrode catalysts. This work may provide a deep understanding of the ECH process and open up new opportunities to design effective systems for the conversion of HMF into value-added products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liran12319发布了新的文献求助20
刚刚
隐形曼青应助哦啦啦采纳,获得10
刚刚
快乐小白菜完成签到,获得积分10
2秒前
体贴太英发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
张自燮发布了新的文献求助10
4秒前
seal完成签到,获得积分10
5秒前
赵媛完成签到,获得积分20
5秒前
光亮的向南完成签到,获得积分10
5秒前
5秒前
FENGHUI完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助紫色哀伤采纳,获得10
6秒前
NexusExplorer应助ZwB采纳,获得10
7秒前
7秒前
念慈发布了新的文献求助10
7秒前
自觉的书蝶完成签到,获得积分10
8秒前
自信的坤发布了新的文献求助10
8秒前
8秒前
赵媛发布了新的文献求助10
8秒前
23完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
一个屁桃完成签到,获得积分10
10秒前
11秒前
renshi647发布了新的文献求助10
11秒前
徐硕完成签到,获得积分10
12秒前
14秒前
科研通AI6应助Tomasong采纳,获得10
14秒前
隐形曼青应助zhuhuaipu采纳,获得10
14秒前
liran12319完成签到,获得积分10
14秒前
15秒前
Kinkin完成签到,获得积分10
16秒前
小玲子完成签到,获得积分10
16秒前
茉莉完成签到,获得积分10
16秒前
lay完成签到,获得积分10
17秒前
小二郎应助体贴太英采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653156
求助须知:如何正确求助?哪些是违规求助? 4789346
关于积分的说明 15062969
捐赠科研通 4811762
什么是DOI,文献DOI怎么找? 2574063
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488445