Sampling-attention deep learning network with transfer learning for large-scale urban point cloud semantic segmentation

计算机科学 增采样 学习迁移 分割 点云 深度学习 人工智能 采样(信号处理) 协议(科学) 云计算 特征(语言学) 机器学习 数据挖掘 计算机视觉 图像(数学) 操作系统 滤波器(信号处理) 哲学 病理 医学 语言学 替代医学
作者
Yunxiang Zhou,Ankang Ji,Limao Zhang,Xiaolong Xue
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105554-105554 被引量:19
标识
DOI:10.1016/j.engappai.2022.105554
摘要

Targeting the development of smart cities to facilitate the significant analysis of large-scale urban for construction and update. This research develops a new method named transfer learning-based sampling-attention network (TSANet) to act on 3D urban point clouds for semantic segmentation. The main contributions of this research are a segmentation model and a transfer learning protocol, where the segmentation model adopts the point downsampling–upsampling structure for time efficiency, the embedding method and an attention mechanism for point cloud feature processing, and the transfer learning protocol is employed to reduce the data requirements and labeling efforts by using prior knowledge for practical application. In addition, a focal loss is designed to assist the model for feature extraction and learning with handling data imbalance. To demonstrate the efficiency and effectiveness of the developed method, a realistic point cloud dataset of Cambridge and Birmingham cities is utilized as a case study. The results demonstrate that (1) the developed method has promising performance with overall accuracy (OA) of 0.9133 and Mean Intersection over Union (MIoU) of 0.5588; (2) the proposed transfer learning protocol contributes to the core model performance by fully combining accuracy and time efficiency, offering a 74.91% improvement in time efficiency; (3) the developed TSANet outperforms other state-of-the-art models, such as PointNet++ and DGCNN, by comparing the accuracy and time efficiency. Overall, the method developed in this research is capable of great potential as a practical application tool by presenting accurate, effective, and efficient results for semantic segmentation of large-scale 3D urban point clouds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Distance发布了新的文献求助10
刚刚
1秒前
1秒前
专注灵凡完成签到,获得积分10
1秒前
Stageruner完成签到,获得积分10
1秒前
kiyo_v完成签到,获得积分10
1秒前
黄超超发布了新的文献求助10
2秒前
落寞剑成完成签到 ,获得积分10
2秒前
七子完成签到,获得积分10
2秒前
klio完成签到 ,获得积分10
3秒前
zzx396完成签到,获得积分0
4秒前
one完成签到 ,获得积分10
5秒前
十五完成签到,获得积分10
5秒前
ptjam完成签到 ,获得积分10
6秒前
神勇的晟睿完成签到 ,获得积分10
7秒前
7秒前
曾珍完成签到 ,获得积分10
7秒前
Muhi完成签到,获得积分10
7秒前
7秒前
自带蓝牙的土豆完成签到 ,获得积分10
8秒前
青羽落霞完成签到 ,获得积分10
9秒前
抹颜完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
14秒前
胡图图完成签到,获得积分10
15秒前
睡觉大王完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
23秒前
玩命的十三完成签到 ,获得积分10
23秒前
寂寞的诗云完成签到,获得积分10
25秒前
我爱科研完成签到 ,获得积分10
25秒前
26秒前
Bin_Liu发布了新的文献求助10
27秒前
She完成签到,获得积分10
27秒前
30秒前
Raki完成签到,获得积分10
31秒前
22完成签到 ,获得积分10
31秒前
Echo_1995完成签到,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022