Estimation of nitrogen content in wheat using indices derived from RGB and thermal infrared imaging

RGB颜色模型 阶段(地层学) 天蓬 氮气 环境科学 人工智能 计算机科学 数学 植物 化学 生物 古生物学 有机化学
作者
Rui Li,Dunliang Wang,Bo Zhu,Tao Liu,Chengming Sun,Zujian Zhang
出处
期刊:Field Crops Research [Elsevier]
卷期号:289: 108735-108735 被引量:18
标识
DOI:10.1016/j.fcr.2022.108735
摘要

The important period of wheat grain accumulation is from the flowering stage to the filling stage, and the nitrogen content of wheat in this period is of great significance to the yield accumulation. With the rapid development of sensor technology, different sensors have been increasingly used for crop nitrogen status estimation due to their flexibility. This study aimed to investigate the use of a combination of image information from two proximal sensors (RGB and thermal sensors) to assess the nitrogen status of wheat at the reproductive growth stage. Previous studies have focused on estimating leaf N status at the nutritional growth stage of wheat, and the precision of N estimation is not high at the later stages. Considering that the canopy was composed of leaves and spikes in the reproductive stage, we integrated leaf N content and spike N content as plant N content for assessment. A two-year field trial was conducted, and this study used a Sony camera to acquire RGB images from flowering to maturity and obtained thermal images using the handle thermal infrared camera during the same period. Then, these images were further processed to extract the color features (17), the texture features (5) and temperature values (2). Based on these 24 indices, this study used three machine learning algorithms (i.e., Back-Propagation neural network (BP), Random Forest (RF) and Support Vector Regression (SVR)), resulted in nine estimation models based on a single dataset (i.e., c-based BP, te-based BP, t-based BP, c-based RF, te-based RF, t-based RF, c-based SVR, te-based SVR, t-based SVR) and 12 models based on data fusions (i.e., c+te-based BP, c+t-based BP, te+t-based BP, c+te+t-based BP, c+te-based RF, c+t-based RF, te+t-based RF, c+te+t-based RF, c+te-based SVR, c+t-based SVR, te+t-based SVR, c+te+t-based SVR). The performance of the 21 models was evaluated and compared with each other according to the coefficient of determination (R2), root mean square error (RMSE) and residual prediction deviation (RPD) in nitrogen content estimation. The results show that the best model was the c+te+t-based RF, which was a model based on the combination of color features, texture features and temperature values. It achieved high accuracy in estimating plant N content (R2 = 0.89, RMSE = 3.23 mg g−1, RPD = 1.90). In conclusion, the combination of information from RGB and thermal images has good potential for application in monitoring crop N content at late reproductive stages, and plant temperature values can be used as effective indicators for assessing crop growth and nitrogen nutrient status.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqq完成签到 ,获得积分20
刚刚
缓慢弼发布了新的文献求助10
刚刚
曹中明发布了新的文献求助30
刚刚
小曾发布了新的文献求助10
1秒前
1秒前
Hilda007应助LinCheng采纳,获得10
1秒前
平淡黑裤完成签到,获得积分20
2秒前
泡泡完成签到,获得积分10
2秒前
完美世界应助专注寻菱采纳,获得10
2秒前
YUYUYU完成签到,获得积分10
3秒前
江南刀王发布了新的文献求助10
3秒前
濛嘻嘻发布了新的文献求助10
3秒前
小夏发布了新的文献求助10
4秒前
4秒前
专注的雪完成签到 ,获得积分10
4秒前
白瑾发布了新的文献求助10
4秒前
无花果应助灵巧安青采纳,获得10
4秒前
稻草人完成签到 ,获得积分10
5秒前
我是老大应助高大笙采纳,获得10
5秒前
所所应助飘逸易文采纳,获得10
5秒前
坚强白凝完成签到,获得积分10
6秒前
科研通AI6应助刘逸飞采纳,获得30
6秒前
Jasper应助谦让谷菱采纳,获得10
6秒前
prove发布了新的文献求助10
6秒前
刻苦牛马完成签到 ,获得积分10
6秒前
lalala发布了新的文献求助10
6秒前
追寻的夏波应助永毅采纳,获得10
6秒前
年轻的背包完成签到,获得积分10
7秒前
无聊的可冥发布了新的文献求助100
7秒前
杨承武完成签到,获得积分10
7秒前
刘海清完成签到,获得积分10
8秒前
8秒前
研友_ndka5L发布了新的文献求助10
8秒前
9秒前
QQQ完成签到,获得积分10
9秒前
Shannon完成签到,获得积分10
9秒前
xinxin完成签到,获得积分10
9秒前
9秒前
9秒前
aobadong完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609460
求助须知:如何正确求助?哪些是违规求助? 4694074
关于积分的说明 14880935
捐赠科研通 4719643
什么是DOI,文献DOI怎么找? 2544750
邀请新用户注册赠送积分活动 1509658
关于科研通互助平台的介绍 1472950