Estimation of nitrogen content in wheat using indices derived from RGB and thermal infrared imaging

RGB颜色模型 阶段(地层学) 天蓬 氮气 环境科学 人工智能 计算机科学 数学 植物 化学 生物 古生物学 有机化学
作者
Rui Li,Dunliang Wang,Bo Zhu,Tao Liu,Chengming Sun,Zujian Zhang
出处
期刊:Field Crops Research [Elsevier]
卷期号:289: 108735-108735 被引量:16
标识
DOI:10.1016/j.fcr.2022.108735
摘要

The important period of wheat grain accumulation is from the flowering stage to the filling stage, and the nitrogen content of wheat in this period is of great significance to the yield accumulation. With the rapid development of sensor technology, different sensors have been increasingly used for crop nitrogen status estimation due to their flexibility. This study aimed to investigate the use of a combination of image information from two proximal sensors (RGB and thermal sensors) to assess the nitrogen status of wheat at the reproductive growth stage. Previous studies have focused on estimating leaf N status at the nutritional growth stage of wheat, and the precision of N estimation is not high at the later stages. Considering that the canopy was composed of leaves and spikes in the reproductive stage, we integrated leaf N content and spike N content as plant N content for assessment. A two-year field trial was conducted, and this study used a Sony camera to acquire RGB images from flowering to maturity and obtained thermal images using the handle thermal infrared camera during the same period. Then, these images were further processed to extract the color features (17), the texture features (5) and temperature values (2). Based on these 24 indices, this study used three machine learning algorithms (i.e., Back-Propagation neural network (BP), Random Forest (RF) and Support Vector Regression (SVR)), resulted in nine estimation models based on a single dataset (i.e., c-based BP, te-based BP, t-based BP, c-based RF, te-based RF, t-based RF, c-based SVR, te-based SVR, t-based SVR) and 12 models based on data fusions (i.e., c+te-based BP, c+t-based BP, te+t-based BP, c+te+t-based BP, c+te-based RF, c+t-based RF, te+t-based RF, c+te+t-based RF, c+te-based SVR, c+t-based SVR, te+t-based SVR, c+te+t-based SVR). The performance of the 21 models was evaluated and compared with each other according to the coefficient of determination (R2), root mean square error (RMSE) and residual prediction deviation (RPD) in nitrogen content estimation. The results show that the best model was the c+te+t-based RF, which was a model based on the combination of color features, texture features and temperature values. It achieved high accuracy in estimating plant N content (R2 = 0.89, RMSE = 3.23 mg g−1, RPD = 1.90). In conclusion, the combination of information from RGB and thermal images has good potential for application in monitoring crop N content at late reproductive stages, and plant temperature values can be used as effective indicators for assessing crop growth and nitrogen nutrient status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨纷飞发布了新的文献求助10
1秒前
2秒前
3秒前
tuanheqi应助imagicky采纳,获得50
3秒前
5秒前
Chridy发布了新的文献求助10
6秒前
句号发布了新的文献求助10
7秒前
10秒前
开开心心的开心应助li采纳,获得10
11秒前
YZL完成签到,获得积分20
12秒前
英俊一刀完成签到,获得积分10
13秒前
Ray发布了新的文献求助10
13秒前
14秒前
17秒前
个性的饼干完成签到,获得积分10
19秒前
羊了个羊完成签到 ,获得积分10
20秒前
松松完成签到,获得积分10
21秒前
大模型应助Heidi采纳,获得10
21秒前
Ray完成签到,获得积分10
24秒前
Chridy发布了新的文献求助10
25秒前
27秒前
在水一方应助笑笑采纳,获得10
30秒前
whhhhhhhh发布了新的文献求助10
30秒前
31秒前
深情安青应助枝桠采纳,获得10
31秒前
小泥娃发布了新的文献求助10
31秒前
飘逸的含蕊完成签到,获得积分10
33秒前
搜集达人应助sb采纳,获得10
33秒前
soapffz完成签到,获得积分10
37秒前
穆亦擎完成签到 ,获得积分10
38秒前
39秒前
乐乐应助Garry采纳,获得10
40秒前
42秒前
Deerlu完成签到,获得积分10
44秒前
未晚完成签到 ,获得积分10
45秒前
新型关注了科研通微信公众号
47秒前
咖啡续命完成签到 ,获得积分10
48秒前
NHN发布了新的文献求助10
48秒前
小泥娃完成签到 ,获得积分10
49秒前
CA发布了新的文献求助10
49秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136252
求助须知:如何正确求助?哪些是违规求助? 2787284
关于积分的说明 7780707
捐赠科研通 2443292
什么是DOI,文献DOI怎么找? 1299034
科研通“疑难数据库(出版商)”最低求助积分说明 625318
版权声明 600888