数学
分叉
离散时间和连续时间
鞍结分岔
倍周期分岔
应用数学
跨临界分岔
分叉理论的生物学应用
捕食
功能性反应
工作(物理)
理论(学习稳定性)
指数稳定性
分岔图
控制理论(社会学)
数学分析
捕食者
非线性系统
统计
生态学
物理
经济
计算机科学
控制(管理)
量子力学
机器学习
生物
热力学
管理
作者
M. Y. Hamada,Tamer El‐Azab,H. El-Metwally
摘要
The dynamical behavior of a discrete predator–prey system with a nonmonotonic functional response is investigated in this work. We study the local asymptotic stability of the positive equilibrium of the system by examining the characteristic equation of the linearized system corresponding to the model. By choosing the growth rate as a bifurcation parameter, the existence of Neimark–Sacker and period‐doubling bifurcations at the positive equilibrium is established. Furthermore, the effects of perturbations on the system dynamics are investigated. Finally, examples are presented to illustrate our main results.
科研通智能强力驱动
Strongly Powered by AbleSci AI