已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cascaded detection method for surface defects of lead frame based on high-resolution detection images

引线框架 帧(网络) 人工智能 过程(计算) 计算机科学 计算机视觉 帧速率 噪音(视频) 目标检测 管道(软件) 模式识别(心理学) 图像(数学) 材料科学 操作系统 半导体器件 复合材料 程序设计语言 电信 图层(电子)
作者
Tingrui Sun,Zhiwei Li,Xinjie Xiao,Zhihui Guo,Wenle Ning,Tingting Ding
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 180-195 被引量:21
标识
DOI:10.1016/j.jmsy.2023.11.017
摘要

In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loii举报MPC_0103求助涉嫌违规
4秒前
赘婿应助淡然安容采纳,获得10
6秒前
勤恳冰淇淋完成签到 ,获得积分10
6秒前
7秒前
随风发布了新的文献求助10
11秒前
13秒前
17秒前
独指蜗牛完成签到 ,获得积分10
19秒前
科研通AI6.2应助lucky采纳,获得10
19秒前
tzy发布了新的文献求助10
20秒前
聪慧鸭子发布了新的文献求助10
21秒前
Pearson完成签到,获得积分10
23秒前
Orange应助虚幻雁荷采纳,获得10
24秒前
29秒前
ashley完成签到,获得积分10
30秒前
yy完成签到,获得积分20
33秒前
泥蝶完成签到 ,获得积分10
33秒前
likever22026完成签到 ,获得积分10
34秒前
ashley发布了新的文献求助10
34秒前
852应助pattrick采纳,获得10
38秒前
39秒前
共享精神应助科研通管家采纳,获得10
41秒前
yy发布了新的文献求助10
44秒前
JoeyJin完成签到,获得积分10
45秒前
傻傻的从梦完成签到 ,获得积分10
47秒前
府中园马发布了新的文献求助10
49秒前
121卡卡完成签到 ,获得积分10
49秒前
昏睡的乌冬面完成签到 ,获得积分10
52秒前
默默小鸽子完成签到 ,获得积分10
53秒前
54秒前
cc完成签到,获得积分10
54秒前
墨白白发布了新的文献求助10
1分钟前
可爱的函函应助yy采纳,获得10
1分钟前
慕青应助kangwen采纳,获得30
1分钟前
李大王完成签到 ,获得积分10
1分钟前
loii举报苏格拉没有底求助涉嫌违规
1分钟前
1分钟前
doctor2023完成签到,获得积分10
1分钟前
平平无奇发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875385
求助须知:如何正确求助?哪些是违规求助? 6516066
关于积分的说明 15676950
捐赠科研通 4993314
什么是DOI,文献DOI怎么找? 2691433
邀请新用户注册赠送积分活动 1633718
关于科研通互助平台的介绍 1591362