Cascaded detection method for surface defects of lead frame based on high-resolution detection images

引线框架 帧(网络) 人工智能 过程(计算) 计算机科学 计算机视觉 帧速率 噪音(视频) 目标检测 管道(软件) 模式识别(心理学) 图像(数学) 材料科学 操作系统 半导体器件 复合材料 程序设计语言 电信 图层(电子)
作者
Tingrui Sun,Zhiwei Li,Xinjie Xiao,Zhihui Guo,Wenle Ning,Tingting Ding
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:72: 180-195 被引量:13
标识
DOI:10.1016/j.jmsy.2023.11.017
摘要

In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123pc发布了新的文献求助10
刚刚
怡然尔芙完成签到,获得积分10
1秒前
cg发布了新的文献求助10
1秒前
1秒前
Hobobi完成签到,获得积分10
2秒前
NexusExplorer应助yyh采纳,获得30
2秒前
3秒前
偷喝汽水完成签到,获得积分10
3秒前
深情安青应助温柔的迎曼采纳,获得10
3秒前
yoyo发布了新的文献求助10
3秒前
4秒前
4秒前
LINCHEN发布了新的文献求助10
4秒前
阿刚发布了新的文献求助10
4秒前
思源应助星落枕畔采纳,获得10
4秒前
谨慎雅山发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI6应助王少辉采纳,获得10
5秒前
6秒前
YY完成签到 ,获得积分10
7秒前
123pc完成签到,获得积分10
7秒前
张天赐完成签到,获得积分10
8秒前
yshj发布了新的文献求助10
8秒前
8秒前
星星的梦完成签到,获得积分10
9秒前
KKKK发布了新的文献求助10
9秒前
浮游应助大意的乐菱采纳,获得10
9秒前
田安平发布了新的文献求助10
9秒前
纯真雁菱发布了新的文献求助10
9秒前
10秒前
10秒前
zero完成签到,获得积分10
10秒前
11秒前
烤冷面应助我有一双AJ哇采纳,获得10
11秒前
11秒前
天天快乐应助魏泽旭采纳,获得10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112070
求助须知:如何正确求助?哪些是违规求助? 4320005
关于积分的说明 13460639
捐赠科研通 4150914
什么是DOI,文献DOI怎么找? 2274512
邀请新用户注册赠送积分活动 1276377
关于科研通互助平台的介绍 1214608