Cascaded detection method for surface defects of lead frame based on high-resolution detection images

引线框架 帧(网络) 人工智能 过程(计算) 计算机科学 计算机视觉 帧速率 噪音(视频) 目标检测 管道(软件) 铅(地质) 模式识别(心理学) 图像(数学) 材料科学 半导体器件 操作系统 地貌学 电信 地质学 复合材料 程序设计语言 图层(电子)
作者
Ting Sun,Zhiwei Li,Xinjie Xiao,Guo Zhang,Wenle Ning,Tingting Ding
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 180-195 被引量:3
标识
DOI:10.1016/j.jmsy.2023.11.017
摘要

In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
碧蓝惋清完成签到,获得积分10
1秒前
2秒前
红豆小猫发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
Jeremy发布了新的文献求助10
6秒前
6秒前
李阳完成签到,获得积分10
7秒前
苗条的子默完成签到,获得积分10
7秒前
7秒前
LiNCHOR发布了新的文献求助10
8秒前
9秒前
abne发布了新的文献求助10
11秒前
mimi完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
清嘉完成签到,获得积分10
15秒前
李阳发布了新的文献求助10
15秒前
秋雅完成签到,获得积分10
15秒前
16秒前
都是发布了新的文献求助10
17秒前
19秒前
peng发布了新的文献求助10
19秒前
七七完成签到,获得积分10
20秒前
是问完成签到 ,获得积分10
21秒前
anling发布了新的文献求助10
21秒前
陶醉觅夏发布了新的文献求助30
21秒前
科目三应助yizhi猫采纳,获得10
22秒前
科研顺利完成签到 ,获得积分10
23秒前
LiNCHOR完成签到,获得积分10
23秒前
24秒前
elisa828完成签到,获得积分10
25秒前
anling完成签到,获得积分10
27秒前
师妹完成签到,获得积分10
28秒前
cc发布了新的文献求助10
28秒前
搞怪柔发布了新的文献求助10
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079