亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cascaded detection method for surface defects of lead frame based on high-resolution detection images

引线框架 帧(网络) 人工智能 过程(计算) 计算机科学 计算机视觉 帧速率 噪音(视频) 目标检测 管道(软件) 模式识别(心理学) 图像(数学) 材料科学 操作系统 半导体器件 复合材料 程序设计语言 电信 图层(电子)
作者
Tingrui Sun,Zhiwei Li,Xinjie Xiao,Zhihui Guo,Wenle Ning,Tingting Ding
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 180-195 被引量:21
标识
DOI:10.1016/j.jmsy.2023.11.017
摘要

In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Iron_five完成签到 ,获得积分0
2秒前
32秒前
nikg发布了新的文献求助10
37秒前
诗梦完成签到,获得积分10
49秒前
YifanWang应助科研通管家采纳,获得30
1分钟前
青葱鱼块完成签到 ,获得积分10
1分钟前
1分钟前
以七完成签到 ,获得积分10
1分钟前
sdkabdrxt完成签到,获得积分10
1分钟前
2分钟前
krajicek发布了新的文献求助10
2分钟前
2分钟前
闪闪沂完成签到 ,获得积分10
3分钟前
科研通AI6.2应助刻苦不弱采纳,获得10
3分钟前
3分钟前
小神仙完成签到 ,获得积分10
3分钟前
3分钟前
Isaac完成签到 ,获得积分10
3分钟前
刻苦不弱发布了新的文献求助10
3分钟前
4分钟前
毛耳朵发布了新的文献求助10
4分钟前
yzy完成签到 ,获得积分10
4分钟前
互助应助毛耳朵采纳,获得10
4分钟前
乐乐应助毛耳朵采纳,获得10
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
忧心的士萧完成签到,获得积分10
4分钟前
今后应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
夏天无完成签到 ,获得积分10
5分钟前
Cloud发布了新的文献求助10
5分钟前
5分钟前
gkhsdvkb发布了新的文献求助10
5分钟前
yin景景完成签到,获得积分10
5分钟前
科研通AI6.2应助开霁采纳,获得10
6分钟前
李健的小迷弟应助颖颖采纳,获得10
6分钟前
6分钟前
颖颖发布了新的文献求助10
6分钟前
颖颖完成签到,获得积分10
6分钟前
酷波er应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870851
求助须知:如何正确求助?哪些是违规求助? 6468547
关于积分的说明 15665078
捐赠科研通 4987083
什么是DOI,文献DOI怎么找? 2689159
邀请新用户注册赠送积分活动 1631508
关于科研通互助平台的介绍 1589536