清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cascaded detection method for surface defects of lead frame based on high-resolution detection images

引线框架 帧(网络) 人工智能 过程(计算) 计算机科学 计算机视觉 帧速率 噪音(视频) 目标检测 管道(软件) 模式识别(心理学) 图像(数学) 材料科学 操作系统 半导体器件 复合材料 程序设计语言 电信 图层(电子)
作者
Tingrui Sun,Zhiwei Li,Xinjie Xiao,Zhihui Guo,Wenle Ning,Tingting Ding
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 180-195 被引量:21
标识
DOI:10.1016/j.jmsy.2023.11.017
摘要

In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ada完成签到 ,获得积分10
12秒前
笨笨的怜雪完成签到 ,获得积分10
36秒前
CodeCraft应助水雾采纳,获得10
44秒前
彩色的芷容完成签到 ,获得积分10
56秒前
平常以云完成签到 ,获得积分10
58秒前
鲤鱼山人完成签到 ,获得积分10
1分钟前
1分钟前
水雾发布了新的文献求助10
1分钟前
tt完成签到,获得积分10
1分钟前
Fairy完成签到,获得积分10
2分钟前
鹏程万里完成签到,获得积分10
2分钟前
暗号完成签到 ,获得积分0
3分钟前
LJJ完成签到,获得积分10
3分钟前
慕青应助研友_8RyzBZ采纳,获得10
3分钟前
ljl86400完成签到,获得积分10
3分钟前
3分钟前
研友_8RyzBZ发布了新的文献求助10
4分钟前
科研通AI6应助阳光的星月采纳,获得10
4分钟前
大个应助研友_8RyzBZ采纳,获得10
5分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
123应助研友_8RyzBZ采纳,获得10
5分钟前
赘婿应助阳光的星月采纳,获得10
5分钟前
外向的妍完成签到,获得积分10
6分钟前
6分钟前
娟子完成签到,获得积分10
7分钟前
7分钟前
lsl应助Atopos采纳,获得30
8分钟前
Criminology34应助Atopos采纳,获得10
8分钟前
9分钟前
9分钟前
9分钟前
嘟嘟完成签到 ,获得积分10
9分钟前
Aray完成签到 ,获得积分10
9分钟前
taster完成签到,获得积分10
10分钟前
10分钟前
光亮静槐完成签到 ,获得积分10
10分钟前
10分钟前
SilverPlane发布了新的文献求助10
10分钟前
SilverPlane完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311