Cascaded detection method for surface defects of lead frame based on high-resolution detection images

引线框架 帧(网络) 人工智能 过程(计算) 计算机科学 计算机视觉 帧速率 噪音(视频) 目标检测 管道(软件) 模式识别(心理学) 图像(数学) 材料科学 操作系统 半导体器件 复合材料 程序设计语言 电信 图层(电子)
作者
Tingrui Sun,Zhiwei Li,Xinjie Xiao,Zhihui Guo,Wenle Ning,Tingting Ding
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:72: 180-195 被引量:21
标识
DOI:10.1016/j.jmsy.2023.11.017
摘要

In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文人青完成签到,获得积分10
1秒前
勤劳太阳完成签到,获得积分10
2秒前
黑暗向日葵完成签到 ,获得积分10
3秒前
行舟完成签到 ,获得积分10
3秒前
Pursue完成签到 ,获得积分10
4秒前
专注笑珊完成签到,获得积分10
4秒前
梁晓雪完成签到 ,获得积分10
5秒前
怕黑面包完成签到 ,获得积分10
6秒前
7秒前
从容听南完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
dis完成签到,获得积分10
9秒前
从容听南发布了新的文献求助20
11秒前
烟花应助Justtry采纳,获得10
11秒前
SN完成签到 ,获得积分10
11秒前
与离完成签到 ,获得积分10
14秒前
老迟到的幼枫完成签到,获得积分10
14秒前
达尔文1完成签到 ,获得积分10
14秒前
KKDT完成签到 ,获得积分10
15秒前
研友_LMBAXn完成签到,获得积分10
17秒前
红衣落花倾城完成签到 ,获得积分10
18秒前
思量博千金完成签到,获得积分10
18秒前
whuhustwit完成签到,获得积分10
19秒前
19秒前
欢喜可愁完成签到 ,获得积分10
20秒前
VelesAlexei完成签到,获得积分10
20秒前
润物无声完成签到,获得积分10
20秒前
木子完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
无情的薯片完成签到,获得积分10
22秒前
荣浩宇完成签到 ,获得积分10
23秒前
23秒前
24秒前
Justtry发布了新的文献求助10
24秒前
随风完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
达尔文完成签到 ,获得积分10
29秒前
hi_traffic完成签到,获得积分10
30秒前
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698543
求助须知:如何正确求助?哪些是违规求助? 5125106
关于积分的说明 15221770
捐赠科研通 4853596
什么是DOI,文献DOI怎么找? 2604155
邀请新用户注册赠送积分活动 1555719
关于科研通互助平台的介绍 1514006