Cascaded detection method for surface defects of lead frame based on high-resolution detection images

引线框架 帧(网络) 人工智能 过程(计算) 计算机科学 计算机视觉 帧速率 噪音(视频) 目标检测 管道(软件) 模式识别(心理学) 图像(数学) 材料科学 操作系统 半导体器件 复合材料 程序设计语言 电信 图层(电子)
作者
Tingrui Sun,Zhiwei Li,Xinjie Xiao,Zhihui Guo,Wenle Ning,Tingting Ding
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:72: 180-195 被引量:13
标识
DOI:10.1016/j.jmsy.2023.11.017
摘要

In the field of semiconductor production and manufacturing, the detection of defects on lead frame surfaces is a vital process. This process plays a key role in ensuring the quality of the final product. Using high-resolution detection images to detect multi-scale tiny surface defects is necessary, but this amplifies the impact of environmental noise. Therefore, suppressing both the false negative rate and false positive rate in practical detection scenarios is a challenge that needs to be overcome. Current research on lead frame surface defect detection is mostly concentrated on the downloaded standard original images, which limits its application in actual production lines. This paper presents a cascaded detection method for surface defects of lead frame based on high-resolution detection images. Firstly, this study presents the unit cell extraction module to convert the detection object from high-resolution image to hundreds of unit cells. The proposed module can handle real-time detection images in the production pipeline, especially addressing situations such as lighting imbalances and tilted detection images. Subsequently, this study proposes a lead frame surface defect detection network (LDD-net), which takes unit cells as inputs and can effectively detect multi-scale defects. Compared to other models, LDD-net can effectively capture the features of subtle defects. Additionally, this paper introduces the deviation in the central width direction into the CIoU localization loss, enhancing the accuracy of defect localization in LDD-net. The data set is constructed using the machine vision detection system and conducts training and testing. Specifically, experiments of LDD-net on the data set obtained 85.01% mean average precision (mAP) and 37 ms of inference time, respectively. The detection accuracy exceeds 95%, and the false negative rate can be controlled below 6%. This approach will assist manual monitoring personnel in evaluating product quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助hiyuz采纳,获得10
刚刚
1秒前
yuany发布了新的文献求助10
2秒前
乔乔兔应助严艾采纳,获得20
3秒前
abc发布了新的文献求助10
3秒前
干饭大王应助liuzhen采纳,获得10
5秒前
香蕉觅云应助吃吃采纳,获得10
5秒前
6秒前
6秒前
情怀应助叶叶叶采纳,获得10
8秒前
9秒前
9秒前
冷静幻嫣完成签到,获得积分10
9秒前
11秒前
jiashan发布了新的文献求助10
11秒前
地表最强青铜五完成签到,获得积分20
11秒前
HelloKun发布了新的文献求助10
11秒前
12秒前
呆萌冰彤完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
hky完成签到,获得积分10
14秒前
林读书完成签到,获得积分10
16秒前
hzs完成签到,获得积分10
16秒前
扣欧克泥发布了新的文献求助10
17秒前
犇骉完成签到,获得积分10
17秒前
17秒前
zhuo完成签到,获得积分10
18秒前
柠檬完成签到,获得积分10
19秒前
zzz完成签到,获得积分10
19秒前
势临完成签到 ,获得积分10
20秒前
22秒前
宋66完成签到,获得积分10
24秒前
25秒前
完美世界应助哈哈哈采纳,获得10
25秒前
飞123发布了新的文献求助10
26秒前
27秒前
NexusExplorer应助li采纳,获得10
27秒前
飘逸的幻灵完成签到,获得积分10
28秒前
我去买个橘子完成签到 ,获得积分10
30秒前
彭于晏应助极品小亮采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969917
求助须知:如何正确求助?哪些是违规求助? 3514626
关于积分的说明 11175060
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795165
邀请新用户注册赠送积分活动 875617
科研通“疑难数据库(出版商)”最低求助积分说明 804891